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Last time: ADMM

For the problem

min
x,z

f(x) + g(z) subject to Ax+Bz = c

we form augmented Lagrangian (scaled form):

Lρ(x, z, w) = f(x) + g(z) +
ρ

2
‖Ax−Bx+ c+ w‖22 −

ρ

2
‖w‖22

Alternating direction method of multipliers or ADMM:

x(k) = argmin
x

Lρ(x, z
(k−1), w(k−1))

z(k) = argmin
z

Lρ(x
(k), z, w(k−1))

w(k) = w(k−1) +Ax(k) +Bz(k) − c

Converges like a first-order method. Very flexible framework
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Projected gradient descent

Consider constrained problem

min
x

f(x) subject to x ∈ C

where f is convex and smooth, and C is convex. Recall projected
gradient descent chooses an initial x(0), repeats for k = 1, 2, 3, . . .

x(k) = PC
(
x(k−1) − tk∇f(x(k−1)

)

where PC is the projection operator onto the set C. Special case
of proximal gradient, motivated by local quadratic expansion of f :

x(k) = PC

(
argmin

y
∇f(x(k−1))T (y− x(k−1)) + 1

2t
‖y− x(k−1)‖22

)

Motivation for today: projections are not always easy!
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Frank-Wolfe method

The Frank-Wolfe method, also called conditional gradient method,
uses a local linear expansion of f :

s(k−1) ∈ argmin
s∈C

∇f(x(k−1))T s

x(k) = (1− γk)x(k−1) + γks
(k−1)

Note that there is no projection; update is solved directly over C

Default step sizes: γk = 2/(k + 1), k = 1, 2, 3, . . .. Note for any
0 ≤ γk ≤ 1, we have x(k) ∈ C by convexity. Can rewrite update as

x(k) = x(k−1) + γk(s
(k−1) − x(k−1))

i.e., we are moving less and less in the direction of the linearization
minimizer as the algorithm proceeds
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Abstract
We provide stronger and more general
primal-dual convergence results for Frank-
Wolfe-type algorithms (a.k.a. conditional
gradient) for constrained convex optimiza-
tion, enabled by a simple framework of du-
ality gap certificates. Our analysis also holds
if the linear subproblems are only solved ap-
proximately (as well as if the gradients are
inexact), and is proven to be worst-case opti-
mal in the sparsity of the obtained solutions.

On the application side, this allows us to
unify a large variety of existing sparse greedy
methods, in particular for optimization over
convex hulls of an atomic set, even if those
sets can only be approximated, including
sparse (or structured sparse) vectors or ma-
trices, low-rank matrices, permutation matri-
ces, or max-norm bounded matrices.
We present a new general framework for con-
vex optimization over matrix factorizations,
where every Frank-Wolfe iteration will con-
sist of a low-rank update, and discuss the
broad application areas of this approach.

1. Introduction

Our work here addresses general constrained convex
optimization problems of the form

min
x2D

f(x) . (1)

We assume that the objective function f is convex and
continuously di↵erentiable, and that the domain D is a
compact convex subset of any vector space1. For such
optimization problems, one of the simplest and earliest
known iterative optimizers is given by the Frank-Wolfe
method (1956), described in Algorithm 1, also known
as the conditional gradient method.

1Formally, we assume that the optimization domain D
is a compact and convex subset of a Hilbert space X , i.e.
a Banach space equipped with an inner product h., .i.
Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author. This
article builds upon the authors PhD thesis (Jaggi, 2011).

Algorithm 1 Frank-Wolfe (1956)

Let x(0) 2 D
for k = 0 . . . K do

Compute s := arg min
s2D

⌦
s,rf(x(k))

↵

Update x(k+1) := (1� �)x(k) + �s, for � := 2
k+2

end for

A step of this algorithm is illustrated in the inset fig-
ure: At a current position x, the algorithm considers
the linearization of the objective function, and moves

f(x)

D

f

x
s

g(x)

towards a minimizer of
this linear function (taken
over the same domain).

In terms of conver-
gence, it is known
that the iterates of
Algorithm 1 satisfy
f(x(k)) � f(x⇤)  O

�
1
k

�
,

for x⇤ being an optimal
solution to (1) (Frank & Wolfe, 1956; Dunn & Harsh-
barger, 1978). In recent years, Frank-Wolfe-type
methods have re-gained interest in several areas, fu-
eled by the good scalability, and the crucial property
that Algorithm 1 maintains its iterates as a convex
combination of only few “atoms” s, enabling e.g.
sparse and low-rank solutions (since at most one new
extreme point of the domain D is added in each step)
see e.g. (Clarkson, 2010; Jaggi, 2011) for an overview.

Contributions. The contributions of this paper are
two-fold: On the theoretical side, we give a conver-
gence analysis for the general Frank-Wolfe algorithm
guaranteeing small duality gap, and provide e�cient
certificates for the approximation quality (which are
useful even for other optimizers). This result is ob-
tained by extending the duality concept as well as the
analysis of (Clarkson, 2010) to general Fenchel duality,
and approximate linear subproblems. Furthermore,
the presented analysis unifies several existing conver-
gence results for di↵erent sparse greedy algorithm vari-
ants into one simplified proof. In contrast to existing
convex optimization methods, our convergence anal-
ysis (as well as the algorithm itself) are fully invari-
ant under any a�ne transformation/pre-conditioning

(From Jaggi 2011)
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Norm constraints

What happens when C = {x : ‖x‖ ≤ t} for a norm ‖ · ‖? Then

s ∈ argmin
‖s‖≤t

∇f(x(k−1))T s

= −t ·
(
argmax
‖s‖≤1

∇f(x(k−1))T s
)

= −t · ∂‖∇f(x(k−1))‖∗

where ‖ · ‖∗ denotes the corresponding dual norm. That is, if we
know how to compute subgradients of the dual norm, then we can
easily perform Frank-Wolfe steps

A key to Frank-Wolfe: this can often be simpler or cheaper than
projection onto C = {x : ‖x‖ ≤ t}
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Outline

Today:

• Examples

• Convergence analysis

• Properties and variants

• Path following
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Example: `1 regularization

For the `1-regularized problem

min
x

f(x) subject to ‖x‖1 ≤ t

we have s(k−1) ∈ −t∂‖∇f(x(k−1))‖∞. Frank-Wolfe update is thus

ik−1 ∈ argmax
i=1,...p

∣∣∇if(x(k−1))
∣∣

x(k) = (1− γk)x(k−1) − γkt · sign
(
∇ik−1

f(x(k−1))
)
· eik−1

Like greedy coordinate descent! (But with diminshing steps)

Note: this is a lot simpler than projection onto the `1 ball, though
both require O(n) operations
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Example: `p regularization

For the `p-regularized problem

min
x

f(x) subject to ‖x‖p ≤ t

for 1 ≤ p ≤ ∞, we have s(k−1) ∈ −t∂‖∇f(x(k−1))‖q, where p, q
are dual, i.e., 1/p+ 1/q = 1. Claim: can choose

s
(k−1)
i = −α · sign

(
∇fi(x(k−1))

)
·
∣∣∇fi(x(k−1))

∣∣p/q, i = 1, . . . n

where α is a constant such that ‖s(k−1)‖q = t (check this!), and
then Frank-Wolfe updates are as usual

Note: this is a lot simpler projection onto the `p ball, for general p!
Aside from special cases (p = 1, 2,∞), these projections cannot be
directly computed (must be treated as an optimization)
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Example: trace norm regularization

For the trace-regularized problem

min
X

f(X) subject to ‖X‖tr ≤ t

we have S(k−1) ∈ −t∂‖∇f(X(k−1))‖op. Claim: can choose

S(k−1) = −t · uvT

where u, v are leading left and right singular vectors of ∇f(X(k−1))
(check this!), and then Frank-Wolfe updates are as usual

Note: this substantially simpler and cheaper than projection onto
the trace norm ball, which requires a singular value decomposition!
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Constrained and Lagrange forms

Recall that solution of the constrained problem

min
x

f(x) subject to ‖x‖ ≤ t

are equivalent to those of the Lagrange problem

min
x

f(x) + λ‖x‖

as we let the tuning parameters t and λ vary over [0,∞]. Typically
in statistics and ML problems, we would just solve whichever form
is easiest, over wide range of parameter values, then use CV

So we should also compare the Frank-Wolfe updates under ‖ · ‖ to
the proximal operator of ‖ · ‖
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• `1 norm: Frank-Wolfe update scans for maximum of gradient;
proximal operator soft-thresholds the gradient step; both use
O(n) flops

• `p norm: Frank-Wolfe update computes raises each entry of
gradient to power and sums, in O(n) flops; proximal operator
not generally directly computable

• Trace norm: Frank-Wolfe update computes top left and right
singular vectors of gradient; proximal operator soft-thresholds
the gradient step, requiring a singular value decomposition

Various other constraints yield efficient Frank-Wolfe updates, e.g.,
special polyhedra or cone constraints, sum-of-norms (group-based)
regularization, atomic norms. See Jaggi (2011)
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Example: lasso comparison

Comparing projected and conditional gradient for constrained lasso
problem, with n = 100, p = 500:
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Projected gradient
Conditional gradient

Note: FW uses standard step sizes, line search would probably help
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Duality gap

Frank-Wolfe iterations admit a very natural duality gap:

∇f(x(k))T (x(k) − s(k))

Claim: this upper bounds on f(x(k))− f?

Proof: by the first-order condition for convexity

f(s) ≥ f(x(k)) +∇f(x(k))T (s− x(k))

Minimizing both sides over all s ∈ C yields

f? ≥ f(x(k)) + min
s∈C

∇f(x(k))T (s− x(k))

= f(x(k)) +∇f(x(k))T (s(k) − x(k))

Rearranged, this gives the duality gap above
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Why do we call it“duality gap”? Rewrite original problem as

min
x

f(x) + IC(x)

where IC is the indicator function of C. The dual problem is

max
u
−f∗(u)− I∗C(−u)

where I∗C is the support function of C. Duality gap at x, u is

f(x) + f∗(u) + I∗C(−u) ≥ xTu+ I∗C(−u)

Evaluated at x = x(k), u = ∇f(x(k)), this gives

∇f(x(k))Tx(k) +max
s∈C

−∇f(x(k))T s = ∇f(x(k))T (x(k) − s(k))

which is our gap
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Convergence analysis

Following Jaggi (2011), define the curvature constant of f over C:

M = max
γ∈[0,1]
x,s,y∈C

y=(1−γ)x+γs

2

γ2

(
f(y)− f(x)−∇f(x)T (y − x)

)

Note that M = 0 for linear f , and f(y)− f(x)−∇f(x)T (y − x)
is called the Bregman divergence, defined by f

Theorem: The Frank-Wolfe method using standard step sizes
γk = 2/(k + 1), k = 1, 2, 3, . . . satisfies

f(x(k))− f? ≤ 2M

k + 2

Thus number of iterations needed for f(x(k))− f? ≤ ε is O(1/ε)
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This matches the sublinear rate for projected gradient descent for
Lipschitz ∇f , but how do the assumptions compare?

For Lipschitz ∇f with constant L, recall

f(y)− f(x)−∇f(x)T (y − x) ≤ L

2
‖y − x‖22

Maximizing over all y = (1− γ)x+ γs, and multiplying by 2/γ2,

M ≤ max
γ∈[0,1]
x,s,y∈C

y=(1−γ)x+γs

2

γ2
· L
2
‖y − x‖22

= max
x,s∈C

L‖x− s‖22 = L · diam2(C)

Hence assuming a bounded curvature is basically no stronger than
what we assumed for projected gradient
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Basic inequality

The key inequality used to prove the Frank-Wolfe convergence rate:

f(x(k)) ≤ f(x(k−1))− γkg(x(k−1)) +
γ2k
2
M

Here g(x) = maxs∈C ∇f(x)T (x− s) is duality gap defined earlier

Proof: write x+ = x(k), x = x(k−1), s = s(k−1), γ = γk. Then

f(x+) = f
(
x+ γ(s− x)

)

≤ f(x) + γ∇f(x)T (s− x) + γ2

2
M

= f(x)− γg(x) + γ2

2
M

Second line used definition of M , and third line the definition of g
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The proof of the convergence result is now straightforward. Denote
by h(x) = f(x)− f? the suboptimality gap at x. Basic inequality:

h(x(k)) ≤ h(x(k−1))− γkg(x(k−1)) +
γ2k
2
M

≤ h(x(k−1))− γkh(x(k−1)) +
γ2k
2
M

= (1− γk)h(x(k−1)) +
γ2k
2
M

where in the second line we used g(x(k−1)) ≥ h(x(k−1))

To get the desired result we use induction:

h(x(k)) ≤
(
1− 2

k + 1

)
2M

k + 1
+

(
2

k + 1

)2M

2
≤ 2M

k + 2
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Affine invariance

Frank-Wolfe updates are affine invariant: for nonsingular matrix A,
define x = Ax′, F (x′) = f(Ax′), consider Frank-Wolfe on F :

s′ = argmin
z∈A−1C

∇F (x′)T z

(x′)+ = (1− γ)x′ + γs′

Multiplying by A produces same Frank-Wolfe update as that from
f . Convergence analysis is also affine invariant: curvature constant

M = max
γ∈[0,1]

x′,s′,y′∈A−1C
y′=(1−γ)x′+γs′

2

γ2

(
F (y′)− F (x′)−∇F (x′)T (y′ − x′)

)

matches that of f , because ∇F (x′)T (y′ − x′) = ∇f(x)T (y − x)
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Inexact updates

Jaggi (2011) also analyzes inexact Frank-Wolfe updates: suppose
we choose s(k−1) so that

∇f(x(k−1))T s(k−1) ≤ min
s∈C

∇f(x(k−1))T s+ Mγk
2
· δ

where δ ≥ 0 is our inaccuracy parameter. Then we basically attain
the same rate

Theorem: Frank-Wolfe using step sizes γk = 2/(k + 1), k =
1, 2, 3, . . ., and inaccuracy parameter δ ≥ 0, satisfies

f(x(k))− f? ≤ 2M

k + 1
(1 + δ)

Note: the optimization error at step k is Mγk/2 · δ. Since γk → 0,
we require the errors to vanish
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Two variants

Two important variants of Frank-Wolfe:

• Line search: instead of using standard step sizes, use

γk = argmin
γ∈[0,1]

f
(
x(k−1) + γ(s(k−1) − x(k−1))

)

at each k = 1, 2, 3, . . .. Or, we could use backtracking

• Fully corrective: directly update according to

x(k) = argmin
y

f(y) subject to y ∈ conv{x(0), s(0), . . . s(k−1)}

Both variants lead to the same O(1/ε) iteration complexity

Another popular variant: away steps, which get linear convergence
under strong convexity
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Path following

Given the norm constrained problem

min
x

f(x) subject to ‖x‖ ≤ t

Frank-Wolfe can be used for path following, i.e., we can produce an
approximate solution path x̂(t) that is ε-suboptimal for every t ≥ 0

Let t0 = 0 and x?(0) = 0, fix m > 0, repeat for k = 1, 2, 3, . . .:

• Calculate

tk = tk−1 +
(1− 1/m)ε

‖∇f(x̂(tk−1))‖∗
and set x̂(t) = x̂(tk−1) for all t ∈ (tk−1, tk)

• Compute x̂(tk) by running Frank-Wolfe at t = tk, terminating
when the duality gap is ≤ ε/m

(This is a simplification of the strategy from Giesen et al., 2012)
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Claim: this produces (piecewise-constant) path with

f(x̂(t))− f(x?(t)) ≤ ε for all t ≥ 0

Proof: rewrite the Frank-Wolfe duality gap as

gt(x) = max
‖s‖≤1

∇f(x)T (x− s) = ∇f(x)Tx+ t‖∇f(x)‖∗

This is a linear function of t. Hence if gt(x) ≤ ε/m, then we can
increase t until t+ = t+ (1− 1/m)ε/‖∇f(x)‖∗, because

gt+(x) = ∇f(x)Tx+ t‖∇f(x)‖∗ + ε− ε/m ≤ ε

i.e., the duality gap remains ≤ ε for the same x, between t and t+
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