Gradient Descent

Ryan Tibshirani
Convex Optimization 10-725

Last time: canonical convex programs

Linear program (LP): takes the form

min L

xT

subject to Dz <d
Ax =10

Quadratic program (QP): like LP, but with quadratic criterion
Semidefinite program (SDP): like LP, but with matrices

Conic program: the most general form of all

Gradient descent

Consider unconstrained, smooth convex optimization
min f(x)
€T

i.e., f is convex and differentiable with dom(f) = R™. Denote the
optimal criterion value by f* = min, f(z), and a solution by z*

Gradient descent: choose initial point (?) € R™, repeat:
) = =1 g Vf(x(k_l)), k=1,2,3,...

Stop at some point

IHANAE

LY

FEERRANERAR]

Gradient descent interpretation

At each iteration, consider the expansion

Fl) ~ (@) + V5@ 5~ 2) + oy — 3

Quadratic approximation, replacing usual Hessian V2 f(x) by %I

f@)+ V@) (y—z) linear approximation to f

>=|ly — |3 proximity term to x, with weight 1/(2t)

Choose next point y = x to minimize quadratic approximation:

T =2 —tVf(x)

Blue point is z, red point is

) 1
zt = argmin f(;p)+Vf(m)T(y—x)+27Hy—x”%
y

Outline

Today:

How to choose step sizes

e Convergence analysis

e Nonconvex functions

Gradient boosting

Fixed step size

Simply take t, =t for all k = 1,23, ..., can diverge if ¢ is too big.
Consider f(z) = (1022 + 23)/2, gradient descent after 8 steps:

10

-10

-20

-20 -10 0 10 20

Can be slow if t is too small. Same example, gradient descent after
100 steps:

o .
«

10

0
|

-10

-20

-20 -10 0 10 20

Converges nicely when t is “just right”. Same example, 40 steps:

20

10
|

-10
|

-20

-20 -10 0 10 20

Convergence analysis later will give us a precise idea of “just right”

11

Backtracking line search

One way to adaptively choose the step size is to use backtracking
line search:

e First fix parameters 0 < f < 1land 0 < o < 1/2

e At each iteration, start with ¢ = t;n;:, and while

fl@ =tV f(x)) > f(x) = at|Vf(2)]3
shrink ¢t = t. Else perform gradient descent update

T =2 —tVf(x)

Simple and tends to work well in practice (further simplification:
just take a = 1/2)

12

Backtracking interpretation

fz +tAz)

f(@) +tVf(x)T Az flx) +atVf(x)T Az

1 t
t=0 to

For us Ax = =V f(x)

13

Setting o = 8 = 0.5, backtracking picks up roughly the right step
size (12 outer steps, 40 steps total),

o
N

10
|

0
|

-10

-20

-20 -10 0 10 20

Exact line search

We could also choose step to do the best we can along direction of
negative gradient, called exact line search:

t = argmin f(z — sV f(z))

s>0

Usually not possible to do this minimization exactly

Approximations to exact line search are typically not as efficient as
backtracking, and it's typically not worth it

15

Convergence analysis

Assume that f convex and differentiable, with dom(f) = R", and
additionally

IVf(z) = Vf)lla < Lllz — ylla for any z,y

l.e., Vf is Lipschitz continuous with constant L > 0

Theorem: Gradient descent with fixed step size ¢t < 1/L satisfies

oo 2@ — a3

fa®) = <

and same result holds for backtracking, with ¢ replaced by 5/L

We say gradient descent has convergence rate O(1/k). l.e., it finds
e-suboptimal point in O(1/¢) iterations

16

Convergence under strong convexity

Reminder: strong convexity of f means f(z) — %[z||3 is convex
for some m > 0

Assuming Lipschitz gradient as before, and also strong convexity:

Theorem: Gradient descent with fixed step size t < 2/(m + L)
or with backtracking line search search satisfies

L
Fa®) = £+ < F 2 — a3

where 0 <ec< 1

Rate under strong convexity is O(c*), exponentially fast! l.e., we
find e-suboptimal point in O(log(1/¢)) iterations

17

10*

102

=y

Called linear convergence, éw"
because looks linear on a =

semi-log plot 1079

“.exact Ls.

backtracking l.s.

_4l L
1079 50 100 150 200
k

(From B & V page 487)

Important note: contraction factor ¢ in rate depends adversely on
condition number L/m: higher condition number = slower rate

Affects not only our upper bound ... very apparent in practice too

18

A look at the conditions

A look at the conditions for a simple problem, f(8) = 3|ly — X33

Lipschitz continuity of V f:
e This means V2f(z) < LI
e As V2f(B) = XTX, we have L = o2

max

(X)

Strong convexity of f:
e This means V2f(z) = mI
o As V2f(B) = XTX, we have m = o2, (X)

min
o If X is wide (i.e., X is n x p with p > n), then omin(X) =0,
and f can't be strongly convex

e Even if omin(X) > 0, can have a very large condition number
L/m = O-rQnaX(X)/O-?nin(X)

19

Practicalities

Stopping rule: stop when ||V f(x)||2 is small
e Recall Vf(z*) = 0 at solution z*
e If f is strongly convex with parameter m, then

IVF(@)l2 < V2me = f(z) - " <e

Pros and cons of gradient descent:

e Pro: simple idea, and each iteration is cheap (usually)

Pro: fast for well-conditioned, strongly convex problems

Con: can often be slow, because many interesting problems
aren’t strongly convex or well-conditioned

Con: can’t handle nondifferentiable functions

20

Can we do better?

Gradient descent has O(1/¢€) convergence rate over problem class
of convex, differentiable functions with Lipschitz gradients

First-order method: iterative method, which updates z(*) in

20 4+ Span{Vf(x(O))’ Vf(a;(l)), o Vf(x(kﬂ))}

Theorem (Nesterov): For any k < (n — 1)/2 and any starting
point 2(?), there is a function f in the problem class such that
any first-order method satisfies

3L||z* — a3

(k)y _ px
f®) = £ 2 32(k + 1)2

Can attain rate O(1/k?), or O(1/+/€)? Answer: yes (we'll see)!

21

What about nonconvex functions?

Assume f is differentiable with Lipschitz gradient as before, but
now nonconvex. Asking for optimality is too much. So we'll settle
for x such that ||V f(x)|2 < e, called e-stationarity

Theorem: Gradient descent with fixed step size ¢t < 1/L satisfies

) (0)y — f*
i_noﬁnk IV (D)2 < \/Q(f(xo)f)

t(k+1)

=U,...,

Thus gradient descent has rate O(1/vk), or O(1/€?), even in the
nonconvex case for finding stationary points

This rate cannot be improved (over class of differentiable functions
with Lipschitz gradients) by any deterministic algorithm?!

1Carmon et al. (2017), “Lower bounds for finding stationary points I

Proof
Key steps:
e Vf Lipschitz with constant L means

Fw) < 1)+ V@) (g —a)+ Sy~ 2l all 2,y

Plugging in y = 2" = 2 — tV f(x),

Fat) < 5~ (1=)V ()3

Taking 0 < t < 1/L, and rearranging,
2
IVf(@)]3 < S (fx) = fa™))

t
° Summing over iterations

ZHW NE < (f(fc‘o))—f(x(’““)))s (f(a©@) — %)

~+ | DN

Lower bound sum by (k -+ 1) min;—q__ [|Vf(z®)||3, conclude
L]

23

Gradient boosting

The Annals of Statistics
2001, Vol. 29, No. 5, 1189-1232

1999 REITZ LECTURE

GREEDY FUNCTION APPROXIMATION:
A GRADIENT BOOSTING MACHINE!

By JEROME H. FRIEDMAN
Stanford University

Function estimation/approximation is viewed from the perspective of
numerical optimization in function space, rather than parameter space. A
connection is made between stagewise additive expansions and steepest-
descent minimization. A general gradient descent “boosting” paradigm is
developed for additive expansions based on any fitting criterion. Specific
algorithms are presented for least-squares, least absolute deviation, and
Huber-M loss functions for regression, and multiclass logistic likelihood
for classification. Special enhancements are derived for the particular case
where the individual additive components are regression trees, and tools
for interpreting such “TreeBoost” models are presented. Gradient boost-
ing of regression trees produces competitive, highly robust, interpretable
procedures for both regression and classification, especially appropriate for
mining less than clean data. Connections between this approach and the
boosting methods of Freund and Shapire and Friedman, Hastie and Tib-
shirani are discussed.

Given responses y; € R and features z; e RP, i =1,...n

Want to construct a flexible (nonlinear) model for response based
on features. Weighted sum of trees:

uZ:ZBJT](a:Z), izl,...n

j=1

Each tree T inputs x;, outputs predicted response. Typically trees

are pretty short
+ +
BILE

25

Pick a loss function L to reflect setting. For continuous responses,

e.g., could take L(y;,u;) = (y;i — u;)?

Want to solve

mln ZL(yZ’ZBJ x;))

Indexes all trees of a fixed size (e.g., depth = 5), so M is huge.
Space is simply too big to optimize

Gradient boosting: basically a version of gradient descent that is
forced to work with trees

First think of optimization as min,, f(u), over predicted values u,
subject to u coming from trees

26

Start with initial model, a single tree u(9) = Tj. Repeat:

o Compute negative gradient d at latest prediction u(*~1),

OL(v:.
di:—[(yz’ul)H Ci=1,...n
8u,; ui:ul(kfl)
e Find a tree T}, that is close to a, i.e., according to
n
min (di — T'(z;))?

trees T 4
i=1

Not hard to (approximately) solve for a single tree

o Compute step size oy, and update our prediction:
u®) = %= 4oy T

Note: predictions are weighted sums of trees, as desired

27

References and further reading

S. Boyd and L. Vandenberghe (2004), “Convex optimization”,

Chapter 9

T. Hastie, R. Tibshirani and J. Friedman (2009), “The
elements of statistical learning”, Chapters 10 and 16
Y. Nesterov (1998), “Introductory lectures on convex
optimization: a basic course”, Chapter 2

L. Vandenberghe, Lecture notes for EE 236C, UCLA, Spring
2011-2012

28

