
Modern Stochastic Methods

Ryan Tibshirani
(notes by Sashank Reddi and Ryan Tibshirani)

Convex Optimization 10-725



Last time: conditional gradient method

For the problem

min
x

f(x) subject to x ∈ C

where f is convex, smooth and C is a convex set, the Frank-Wolfe
method chooses an initial x(0) and repeats for k = 1, 2, 3, . . .

s(k−1) ∈ argmin
s∈C

∇f(x(k−1))T s

x(k) = (1− γk)x(k−1) + γks
(k−1)

Here γk is a step size, either prespecified (as in γk = 2/(k + 1)) or
chosen by line search. Convergence is similar to projected gradient

For many problems, linear minimization over C is simpler or more
efficient than projection onto C, hence the appeal of Frank-Wolfe

2



Stochastic gradient descent

Consider minimizing an average of functions

min
x

1

n

n∑
i=1

fi(x)

As ∇∑n
i=1 fi(x) =

∑n
i=1∇fi(x), gradient descent or GD repeats:

x(k) = x(k−1) − tk ·
1

n

n∑
i=1

∇fi(x(k−1)), k = 1, 2, 3, . . .

In comparison, stochastic gradient descent or SGD repeats:

x(k) = x(k−1) − tk · ∇fik(x(k−1)), k = 1, 2, 3, . . .

where ik ∈ {1, . . . n} is randomly chosen index at iteration k. Note
E[∇fik(x)] = ∇f(x), so we use unbiased estimate of full gradient

3



Mini-batches

Also common is mini-batch stochastic gradient descent, where we
choose a random subset Ik ⊆ {1, . . . n}, of size |Ik| = b� n, and
repeat:

x(k) = x(k−1) − tk ·
1

b

∑
i∈Ik
∇fi(x(k−1)), k = 1, 2, 3, . . .

Again, we are approximating full graident by an unbiased estimate:

E
[

1

b

∑
i∈Ik
∇fi(x)

]
= ∇f(x)

Using mini-batches reduces the variance of our gradient estimate
by a factor 1/b, but is also b times more expensive

4



Example: logistic regression

Given (xi, yi) ∈ Rp × {0, 1}, i = 1, . . . n, recall logistic regression:

min
β

f(β) =
1

n

n∑
i=1

(
− yixTi β + log(1 + exp(xTi β))

)
︸ ︷︷ ︸

fi(β)

Gradient computation ∇f(β) = 1
n

∑n
i=1

(
yi − pi(β)

)
xi is doable

when n is moderate, but not when n is huge

Full gradient (also called batch) versus stochastic gradient:

• One batch update costs O(np)

• One mini-batch update costs O(bp)

• One stochastic update costs O(p)

5



Example with n = 10, 000, p = 20, all methods use fixed step sizes:

0 10 20 30 40 50

0.
50

0.
55

0.
60

0.
65

Iteration number k

C
rit

er
io

n 
fk

Full
Stochastic
Mini−batch, b=10
Mini−batch, b=100

6



What’s happening? Now let’s parametrize by flops:

1e+02 1e+04 1e+06

0.
50

0.
55

0.
60

0.
65

Flop count

C
rit

er
io

n 
fk

Full
Stochastic
Mini−batch, b=10
Mini−batch, b=100

7



Finally, looking at suboptimality gap (on log scale):

0 10 20 30 40 50

1e
−

12
1e

−
09

1e
−

06
1e

−
03

Iteration number k

C
rit

er
io

n 
ga

p 
fk

−
fs

ta
r

Full
Stochastic
Mini−batch, b=10
Mini−batch, b=100

8



Convergence rates

Recall the following:

Condition GD rate SGD rate

Convex O(1/
√
k) O(1/

√
k)

+ Lipschitz gradient O(1/k) O(1/
√
k)

+ Strongly convex O(ck) O(1/k)

Notes:

• In GD, we can take fixed step sizes in the latter two cases

• In SGD, we always take diminishing step sizes to control the
variance (of the gradient estimate)

• Mini-batches are a wash in terms of flops (but still popular
practice)

9



End of the story?

Is this the end of the story? SGD simply cannot adapt to strong
convexity, and this is the best we can hope for?

For a while, the answer was believed to be yes, as Nemirovski and
others established matching lower bounds ... however this was for
general stochastic problem, where

f(x) =

∫
F (x, ξ) dP (ξ)

For finite sums (our focus)

f(x) =
1

n

n∑
i=1

fi(x)

new wave of variance reduction work shows we can modify SGD to
converge much faster, basically retaining the properties of GD

10



Outline

Rest of today:

• Variance reduction (SAG, SAGA)

• Acceleration and momentum

• Adaptive step sizes (AdaGrad)

11



Stochastic average gradient

Stochastic average gradient or SAG (Schmidt, Le Roux, and Bach
2013) is a breakthrough method in stochastic optimization:

• Maintain table, containing gradient gi of fi, i = 1, . . . n

• Initialize x(0), and g
(0)
i = ∇fi(x(0)), i = 1, . . . n

• At steps k = 1, 2, 3, . . ., pick random ik ∈ {1, . . . n}, then let

g
(k)
ik

= ∇fik(x(k−1)) (most recent gradient of fik )

Set all other g
(k)
i = g

(k−1)
i , i 6= ik, i.e., these stay the same

• Update

x(k) = x(k−1) − tk ·
1

n

n∑
i=1

g
(k)
i

12



Notes:

• Key of SAG is to allow each fi, i = 1, . . . n to communicate a
part of the gradient estimate at each step

• This basic idea can be traced back to incremental aggregated
gradient (Blatt, Hero, Gauchman, 2006)

• SAG gradient estimates are no longer unbiased, but they have
greatly reduced variance

• Isn’t it expensive to average all these gradients? Basically just
as efficient as SGD, as long we’re clever:

x(k) = x(k−1) − tk ·
(
g
(k)
ik

n
−
g
(k−1)
ik

n
+

1

n

n∑
i=1

g
(k−1)
i︸ ︷︷ ︸

old table average

)

︸ ︷︷ ︸
new table average

13



SAG convergence analysis

Assume that f(x) = 1
n

∑n
i=1 fi(x), where each fi is differentiable,

and ∇fi is Lipschitz with constant L

Denote x̄(k) = 1
k

∑k−1
`=0 x

(`), the average iterate after k − 1 steps

Theorem (Schmidt, Le Roux, Bach): SAG, with a fixed step
size t = 1/(16L), and the initialization

g
(0)
i = ∇fi(x(0))−∇f(x(0)), i = 1, . . . n

satisfies

E[f(x̄(k))]− f? ≤ 48n

k

(
f(x(0))− f?

)
+

128L

k
‖x(0) − x?‖22

where the expectation is taken over random choices of indices

14



Notes:

• Result stated in terms of the average iterate x̄(k), but also can

be shown to hold for best iterate x
(k)
best seen so far

• This is O(1/k) convergence rate for SAG. Compare to O(1/k)
rate for GD, and O(1/

√
k) rate for SGD

• But, the constants are different! Bounds after k steps:

GD :
L

2k
‖x(0) − x?‖22

SAG :
48n

k

(
f(x(0))− f?

)
+

128L

k
‖x(0) − x?‖22

• So first term in SAG bound suffers from factor of n; authors
suggest smarter initialization to make f(x(0))− f? small (e.g.,
they suggest using result of n SGD steps)

15



Convergence under strong convexity

Assume further that each fi is strongly convex with parameter m

Theorem (Schmidt, Le Roux, Bach): SAG, with a step size
t = 1/(16L) and the same initialization as before, satisfies

E[f(x(k))]− f? ≤
(

1−min
{ m

16L
,

1

8n

})k
×(

3

2

(
f(x(0))− f?

)
+

4L

n
‖x(0) − x?‖22

)
Notes:

• This is linear convergence rate O(ck) for SAG. Compare this
to O(ck) for GD, and only O(1/k) for SGD

• Like GD, we say SAG is adaptive to strong convexity (achieves
better rate with same settings)

• Proofs of these results not easy: 15 pages, computed-aided!

16



Example: logistic regression

Back to our logistic regression, SGD versus SAG, over 30 reruns of
these randomized algorithms:

0 500 1000 1500 2000

0.
00

02
0.

00
06

0.
00

10
0.

00
14

Iteration number k

C
rit

er
io

n 
ga

p 
fk

 −
 fs

ta
r

SG
SAG

17



Notes:

• SAG does well, but did not work out of the box; required a
specific setup

• Took one full cycle of SGD (one pass over the data) to get
β(0), and then started SGD and SAG both from β(0). This
warm start helped a lot

• SAG initialized at g
(0)
i = ∇fi(β(0)), i = 1, . . . n, computed

during initial SGD cycle. Centering these gradients was much
worse (and so was initializing them at 0)

• Tuning the fixed step sizes for SAG was very finicky; here now
hand-tuned to be about as large as possible before it diverges

• Authors of SAG conveyed that this algorithm will work the
best, relative to SGD, for ill-conditioned problems (the current
problem not being ill-conditioned at all)

18



SAGA

SAGA (Defazio, Bach, and Lacoste-Julien 2014) is a follow-up on
the SAG work:

• Maintain table, containing gradient gi of fi, i = 1, . . . n

• Initialize x(0), and g
(0)
i = ∇fi(x(0)), i = 1, . . . n

• At steps k = 1, 2, 3, . . ., pick random ik ∈ {1, . . . n}, then let

g
(k)
ik

= ∇fik(x(k−1)) (most recent gradient of fik )

Set all other g
(k)
i = g

(k−1)
i , i 6= ik, i.e., these stay the same

• Update

x(k) = x(k−1) − tk ·
(
g
(k)
ik
− g(k−1)ik

+
1

n

n∑
i=1

g
(k−1)
i

)

19



Notes:

• SAGA gradient estimate g
(k)
ik
− g(k−1)ik

+ 1
n

∑n
i=1 g

(k−1)
i , versus

SAG gradient estimate 1
ng

(k)
ik
− 1

ng
(k−1)
ik

+ 1
n

∑n
i=1 g

(k−1)
i

• Recall, SAG estimate is biased; remarkably, SAGA estimate is
unbiased! Simple explanation: consider family of estimators

θα = α(X − Y ) + E(Y )

for E(X), where α ∈ [0, 1], and X,Y are presumed correlated.
We have

E(θα) = αE(X) + (1− α)E(Y )

Var(θα) = α2
(
Var(X) + Var(Y )− 2Cov(X,Y )

)
SAGA uses α = 1 (unbiased), SAG uses α = 1/n (biased)

• SAGA matches convergence rates of SAG, with simpler proofs

20



Example: logistic regression

Back to our logistic regression example, now adding SAGA to mix:

0 500 1000 1500 2000

0.
00

02
0.

00
06

0.
00

10
0.

00
14

Iteration number k

C
rit

er
io

n 
ga

p 
fk

 −
 fs

ta
r

SG
SAG
SAGA

21



Notes:

• SAGA does well, but again it required somewhat specific setup

• As before, took one full cycle of SGD (one pass over the data)
to get β(0), and then started SGD, SAG, SAGA all from β(0).
This warm start helped a lot

• SAGA initialized at g
(0)
i = ∇fi(β(0)), i = 1, . . . n, computed

during initial SGD cycle. Centering these gradients was much
worse (and so was initializing them at 0)

• Tuning the fixed step sizes for SAGA was fine; seemingly on
par with tuning for SGD, and more robust than tuning for SAG

• Interestingly, the SAGA criterion curves look like SGD curves
(realizations being jagged and highly variable); SAG looks very
different, and this really emphasizes the fact that its updates
have much lower variance

22



Many, many others

A lot of recent work revisiting stochastic optimization:

• SDCA (Shalev-Schwartz, Zhang, 2013): applies coordinate
ascent to the dual of ridge regularized problems, and uses
randomly selected coordinates. Effective primal updates are
similar to SAG/SAGA

• SVRG (Johnson, Zhang, 2013): like SAG/SAGA, but does not
store a full table of gradients, just an average, and updates
this occasionally

• There’s also S2GD (Konecny, Richtarik, 2014), MISO (Mairal,
2013), Finito (Defazio, Caetano, Domke, 2014), etc.

• Both the SAG and SAGA papers give very nice reviews and
discuss connections

23



Optimality and acceleration

For finite sums, Lan and Zhou (2015) (also Woodworth and Srebro
2016) prove lower bounds, that do no match to upper bounds from
SAG, SAGA (and others). E.g., for strongly convex setting:

• SAG, SAGA (others) have iteration complexity:

O

((
n+

L

m

)
log(1/ε)

)
• Lower bound:

O

((
n+

√
nL

m

)
log(1/ε)

)

Can we do better? Yes! Use acceleration (Lan and Zhou 2015, Lin
et al., 2015)

24



Momentum and beyond

Variance reduction + acceleration completely solve the finite sum
case. Beyond this, the story is much more complicated ...

• Recall, for general stochastic setting, the performance of SGD
cannot be improved (matching lower bounds in Nemirovski et
al. 2009)

• Acceleration is less used for nonconvex problems (?), but a
related technique is often used: momentum

• Predates acceleration by nearly two decades (Polyak, 1964).
In practice, Polyak’s heavy ball method can work really well:

x(k) = x(k−1) + α(x(k−1) − x(k−2))− tk∇fik(x(k−1))

but it can also be somewhat fragile

• Open problem: when and why does this work?

25



Polyak’s heavy ball versus Nesterov acceleration, in optimizing a
convex quadratic (from Shi et al., 2018):

k
0 50 100 150

f
(x

k
)
−
f
(x

⋆
)

10-4

10-3

10-2

10-1

100

101

Heavy-ball method: s=0.09
NAG-SC:                 s=0.09

Figure 1: A numerical comparison between NAG-SC and heavy-ball method. The objective function (ill-
conditioned µ/L ≪ 1) is f(x1, x2) = 5 × 10−3x2

1 + x2
2, with the initial iterate (1, 1).

algorithms to obtain ordinary differential equations (ODEs) that can be analyzed using the rich
toolbox associated with ODEs, including Lyapunov functions3. For instance, [SBC16] shows that

Ẍ(t) +
3

t
Ẋ(t) + ∇f(X(t)) = 0, (1.8)

with initial conditions X(0) = x0 and Ẋ(0) = 0, is the exact limit of NAG-C (1.5) by taking the
step size s → 0. Alternatively, the starting point may be a Lagrangian or Hamiltonian frame-
work [WWJ16]. In either case, the continuous-time perspective not only provides analytical power
and intuition, but it also provides design tools for new accelerated algorithms.

Unfortunately, existing continuous-time formulations of acceleration stop short of differentiating
between the heavy-ball method and NAG-SC. In particular, these two methods have the same
limiting ODE (see, for example, [WRJ16]):

Ẍ(t) + 2
√

µẊ(t) + ∇f(X(t)) = 0, (1.9)

and, as a consequence, this ODE does not provide any insight into the stronger convergence results
for NAG-SC as compared to the heavy-ball method. As will be shown in Section 2, this is because

the gradient correction
1−√

µs
1+

√
µss (∇f(xk) − ∇f(xk−1)) = O(s1.5) is an order-of-magnitude smaller

than the other terms in (1.4) if s = o(1). Consequently, the gradient correction is not reflected in
the low-resolution ODE (1.9) associated with NAG-SC, which is derived by simply taking s → 0 in
both (1.2) and (1.4).

1.2 Overview of Contributions

Just as there is not a singled preferred way to discretize a differential equation, there is not a single
preferred way to take a continuous-time limit of a difference equation. Inspired by dimensional-

3One can think of the Lyapunov function as a generalization of the idea of the energy of a system. Then the
method studies stability by looking at the rate of change of this measure of energy.

4

26



Adaptive step sizes

Another big topic in stochastic optimization these days: adaptive
step sizes

To motivate, let’s consider a logistic regression problem, where xij
are binary, and many of them are zero. E.g., classifying whether a
given movie review is positive or negative:

Piece of subtle art. Maybe a masterpiece. Doubtlessly a special
story about the ambiguity of existence.

Some words are common (blue) and uninformative and some rare
(green) and informative. Here:

• xij represents whether the jth word is present in ith review

• yi represents the ith review is positive or negative (sentiment)

27



Recall we have fi(β) = −yixTi β + log(1 + exp(xTi β)), and

∇fi(β) =

(
− yi +

1

1 + exp(−xTi β)

)
xi

Observation: xij = 0 implies that ∇jfi(β) = 0. Also ‖∇fi(β)‖2 is
large when ith review is misclassified

So what does SGD do?

• Gives equal weight to common and to rare informative words

• Diminishing step sizes tk means the rare informative features
are learned very slowly ...

To escape this long wait, we’ll have to adapt the step sizes to pick
up the informative features

28



AdaGrad

AdaGrad (Duchi, Hazan, and Singer 2010): very popular adaptive
method. Let g(k) = ∇fik(x(k−1)), and update for j = 1, . . . p:

x
(k)
j = x

(k−1)
j − α ·

g
(k)
j√∑k

`=1(g
(`)
j )2

Notes:

• AdaGrad does not require tuning learning rate: α > 0 is fixed
constant, learning rate decreases naturally over iterations

• Learning rate of rare informative features diminishes slowly

• Can drastically improve over SGD in sparse problems

• More recent variations Adam, RMSProp, etc., very popular in
training deep nets

29



References and further reading

• J. Duchi and E. Hazan and Y. Singer (2010), “Adaptive
subgradient methods for online learning and stochastic
optimization”

• A. Defasio and F. Bach and S. Lacoste-Julien (2014), “SAGA:
A fast incremental gradient method with support for
non-strongly convex composite objectives”

• G. Lan and Y. Zhou (2015), “An optimal randomized
incremental gradient method”

• A. Nemirovski and A. Juditsky and G. Lan and A. Shapiro
(2009), “Robust stochastic optimization approach to
stochastic programming”

• M. Schmidt and N. Le Roux and F. Bach (2013), “Minimizing
finite sums with the stochastic average gradient”

30


