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Last time: barrier method

Given the problem

min f(z)
subject to  hi(x) <0,i=1,...m
Ax=b

where f, h;, 1 =1,...m are convex and twice differentiable, and
strong duality holds. We consider

min tf(z) + o(x)

x

subject to Ax =b

where ¢ is the log barrier function

¢(x) = =) log(~hi(x))
i=1



Let z*(¢) be a solution to the barrier problem for particular ¢ > 0,
and f* be optimal value in original problem. We can show m/t is
a duality gap, so that

f@r(t) = [ <mj/t

Motivates the barrier method, where we solve the barrier problem
for increasing values of ¢ > 0, until duality gap satisfies m/t < e

We fix (0 > 0, u > 1. We use Newton to compute 20 = x*(t), a
solution to barrier problem at t = t(9. For k =1,2,3,...
e Solve the barrier problem at ¢t = t(*) using Newton initialized
at 21 to yield (%) = 2*(1)
o Stop if m/t < ¢, else update t*+1) = ;¢



Outline

Today:
e Perturbed KKT conditions, revisited
e Primal-dual interior-point method
e Backtracking line search
e Highlight on standard form LPs



Barrier versus primal-dual method

Today we will discuss the primal-dual interior-point method, which
solves basically the same problems as the barrier method. What's
the difference between these two?

Overview:

Both can be motivated in terms of perturbed KKT conditions

Primal-dual interior-point methods take one Newton step, and
move on (no separate inner and outer loops)

Primal-dual interior-point iterates are not necessarily feasible

Primal-dual interior-point methods are often more efficient, as
they can exhibit better than linear convergence

Primal-dual interior-point methods are less intuitive ...



Perturbed KKT conditions

Barrier method iterates (z*(t), u*(t),v*(t)) can be motivated as
solving the perturbed KKT conditions:

+ZuZVh )+ ATv =0

ui'hi(m):—(l/t), i=1,...m
hi(z) <0, i=1,...m, Ax=hb

uiZO, i=1,...m

Only difference between these and actual KKT conditions for our
original problem is second line: these are replaced by

ui-hi(:r):(), i:1,...m

i.e., complementary slackness, in actual KKT conditions



Perturbed KKT as nonlinear system

Can view this as a nonlinear system of equations, written as

Vf(z) + Dh(z)Tu+ ATv
r(x,u,v) = ( —diag(u)h(z) — (1/t)1 ) =0
Ax —b
where
hl (.’E) Vhl (.T)T
h(z) = , Dh(x) =
B () Vh (z)T

Newton's method, recall, is generally a root-finder for a nonlinear
system F(y) = 0. Approximating F'(y + Ay) ~ F(y) + DF(y)Ay
leads to

Ay = —(DF(y)"'F(y)

What happens if we apply this to r(z,u,v) = 0 above?



Newton on perturbed KKT, vl

Approach 1: from middle equation (relaxed comp slackness), note
that w; = —1/(thi(z)), i = 1,...m. So after eliminating u, we get

( Vi) + 32 (= 1(x))Vh (z) + AT >

=0
b

r(z,v) = s

Thus the Newton root-finding update (Az, Av) is determined by

[ Hia () fg“ } ( Ar ) — —r(z,v)

where Hpy () =
V2 f(2) + X0 gtz VRi(@) Vhi(@)T + 30 (= ) Vhi(2)

This is just the KKT system solved by one iteration of Newton's
method for minimizing the barrier problem



Newton on perturbed KKT, v2

Approach 2: directly apply Newton root-finding update, without
eliminating u. Introduce notation

Tdual = Vf(2) + Dh(z)Tu+ ATv

Tcent = _diag(u)h(x) - (1/t)t

Tprim = Az — b

called the dual, central, and primal residuals at y = (x,u,v). Now
root-finding update Ay = (Az, Au, Av) is given by

de ($) Dh(m)T AT Az Tdual
—diag(u)Dh(x) —diag(h(z)) 0 Au | == reent
A 0 0 Av T'prim

where Hpq(z) = V2f(2) + Y00 wiV2hi()



Some notes:

In v2, update directions for the primal and dual variables are
inexorably linked together

Also, v2 and v1 leads to different (nonequivalent) updates

As we saw, one iteration of vl is equivalent to inner iteration
in the barrier method

And v2 defines a new method called primal-dual interior-point
method, that we will flesh out shortly

One complication: in v2, the dual iterates are not necessarily
feasible for the original dual problem ...

10



Surrogate duality gap

For barrier method, we have simple duality gap: m/t, since we set
u; = —1/(th;(x)), i = 1,...m and saw this was dual feasible

For primal-dual interior-point method, we can construct surrogate
duality gap:

n=—h(z)Tu=— Zuzhz(az)
i=1

This would be a bonafide duality gap if we had feasible points, i.e.,
Tprim = 0 and 7qua1 = 0, but we don't, so it's not

What value of parameter ¢ does this correspond to in perturbed
KKT conditions? This is t =m/n
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Primal-dual interior-point method

Putting it all together, we now have our primal-dual interior-point
method. Start with 2(©) such that h;(z(®)) < 0,i=1,...,m, and
u© >0, v, Define (0 = —h(z(O) T4 We fix 1 > 1, repeat
for k=1,2,3...

Define ¢t = pm/n*—1

Compute primal-dual update direction Ay

Use backtracking to determine step size s
Update y®) = y(-=1) 4 5. Ay

o Compute n¥) = —p(z(+))Ty k)

* Stop if ™) < ¢ and (|[rprial|3 + [lranai[3)'/* < ¢

Note that we stop based on surrogate duality gap, and approximate
feasibility. (Line search maintains h;(z) <0, u; >0,i=1,...,m)
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Backtracking line search
At each step, must ensure we arrive at y* =y + sAy, i.e.,
et =z+sAz, vt =u+sAu, vT =v+sAv
that maintains both h;(z) <0, and u; >0,i=1,...m

A multi-stage backtracking line search for this purpose: start with
largest step size Spmax < 1 that makes u + sAu > 0:

Smax = min {1, min{—w;/Au; : Au; < 0}}

Then, with parameters a, 8 € (0, 1), we set s = 0.998max, and
e Update s = s, until hy(z%) <0,i=1,...m
e Update s = (s, until
(2, ut, vF)[l2 < (1= as)lr(z, u, v)|l2
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Some history

Dantzig (1940s): the simplex method, still today is one of the
most well-known /well-studied algorithms for LPs

Klee and Minty (1972): pathological LP with n variables and
2n constraints, simplex method takes 2" iterations to solve
Khachiyan (1979): polynomial-time algorithm for LPs, based
on ellipsoid method of Nemirovski and Yudin (1976). Strong
in theory, weak in practice

Karmarkar (1984): interior-point polynomial-time method for
LPs. Fairly efficient (US Patent 4,744,026, expired in 2006)

Renegar (1988): Newton-based interior-point algorithm for
LP. Best known complexity ... until Lee and Sidford (2014)

Modern state-of-the-art LP solvers typically use both simplex
and interior-point methods
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Highlight: standard LP

Recall the standard form LP:

min L

T

subject to Az =10
x>0

forc e R™", A € R™*" pc R™. lts dual is:

max blw

u,v

subject to ATv+u=c
u>0

(This is not a bad thing to memorize)
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KKT conditions

The points 2* and (u*,v*) are respectively primal and dual optimal
LP solutions if and only if they solve:

ATv+u=c
ziu; =0,2=1,...,n
Axr =b
x,u >0

Neat fact: the simplex method maintains the first three conditions
and aims for the fourth one ... interior-point methods maintain the
first and last two, and aim for the second
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The perturbed KKT conditions for standard form LP are hence:

ATy +u=c
ru; =1/t i=1,....n
Ax=b
z,u >0

What do our interior point methods do?

Barrier method (after elim u): Primal-dual method:
0= rpe(z,v) 0 = rpa(z,u,v)
[ ATv +diag(z)"t - (1/H)1 — ¢ ATv+u—c
N Az —b = [ diag(z)u — (1/t)1
Az — b
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Barrier method: set 0 = r,,(y + Ay) = rp:(y) + Dry(y)Ay, ie.,

solve ) - A
—diag(z)™ ¢/t A T
0] (35) i

and take a step y* = y + sAy (with line search for s > 0), and
iterate until convergence. Then update t = ut

Primal-dual method: set 0 = rpq(y + Ay) ~ rpa(y) + Drpa(y) Ay,
i.e., solve

0 1 AT Ax
diag(u) diag(z) 0 Au | = —rpa(z,u,v)
A 0 0 Av

and take a step y* = y + sAy (with line search for s > 0), but
only once. Then update ¢t = put
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Example: barrier versus primal-dual

Example from B & V 11.3.2 and 11.7.4: standard LP with n = 50
variables and m = 100 equality constraints

Barrier method uses various values of u, primal-dual method uses
i = 10. Both use « =0.01, 5 =0.5

102 10°

100

1072
=107t

1076

1078

10-19 10719
g T R — 0 5 10 15 20 25 30 5 10 15 20 25 30

Newton iterations iteration number iteration number

Barrier duality gap  Primal-dual surrogate Primal-dual feasibility
duality gap gap, where Teas =
(Hrprim”% + ||rdual||%)1/2

Can see that primal-dual is faster to converge to high accuracy
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Now a sequence of problems with n = 2m, and n growing. Barrier
method uses 1 = 100, runs two outer loops (decreases duality gap
by 10%); primal-dual method uses 1 = 10, stops when surrogate
duality gap and feasibility gap are at most 10~%

35 50

40

30

Newton iterations
iterations

20

15, > : >
10! 102 103 10t 102 10%
m m

Barrier method Primal-dual method

Primal-dual method requires only slightly more iterations, despite
the fact that it is producing much higher accuracy solutions
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