
Quasi-Newton Methods

Zico Kolter
(notes by Ryan Tibshirani, Javier Peña, Zico Kolter)

Convex Optimization 10-725



Last time: primal-dual interior-point methods

Given the problem

min
x

f(x)

subject to h(x) ≤ 0

Ax = b

where f , h = (h1, . . . , hm), all convex and twice differentiable, and
strong duality holds. Central path equations:

r(x, u, v) =



∇f(x) +Dh(x)Tu+AT v
−diag(u)h(x)− 1/t

Ax− b


 = 0

subject to u > 0, h(x) < 0

2



Primal dual interior point method: repeat updates

(x+, u+, v+) = (x, u, v) + s(∆x,∆u,∆v)

where (∆x,∆u,∆v) is defined by Newton step:




Hpd(x) Dh(x)T AT

−diag(u)Dh(x) −diag(h(x)) 0
A 0 0






∆x
∆u
∆v


 = −r(x, u, v)

and Hpd(x) = ∇2f(x) +
∑m

i=1 ui∇2hi(x)

• Step size s > 0 is chosen by backtracking, while maintaining
u > 0, h(x) < 0

• Primal-dual iterates are not necessarily feasible

• But often converges faster than barrier method

3



Outline

Today:

• Quasi-Newton motivation

• SR1, BFGS, DFP, Broyden class

• Convergence analysis

• Limited memory BFGS

• Stochastic quasi-Newton

4



Gradient descent and Newton revisited

Back to unconstrained, smooth convex optimization

min
x

f(x)

where f is convex, twice differentiable, and dom(f) = Rn. Recall
gradient descent update:

x+ = x− t∇f(x)

and Newton’s method update:

x+ = x− t(∇2f(x))−1∇f(x)

• Newton’s method has (local) quadratic convergence, versus
linear convergence of gradient descent

• But Newton iterations are much more expensive ...

5



Quasi-Newton methods

Two main steps in Newton iteration:

• Compute Hessian ∇2f(x)

• Solve the system ∇2f(x)∆x = −∇f(x)

Each of these two steps could be expensive

Quasi-Newton methods repeat updates of the form

x+ = x+ t∆x

where direction ∆x is defined by linear system

B∆x = −∇f(x)

for some approximation B of ∇2f(x). We want B to be easy to
compute, and B∆x = g to be easy to solve

6



Some history

• In the mid 1950s, W. Davidon was a mathematician/physicist
at Argonne National Lab

• He was using coordinate descent on an optimization problem
and his computer kept crashing before finishing

• He figured out a way to accelerate the computation, leading
to the first quasi-Newton method (soon Fletcher and Powell
followed up on his work)

• Although Davidon’s contribution was a major breakthrough in
optimization, his original paper was rejected

• In 1991, after more than 30 years, his paper was published in
the first issue of the SIAM Journal on Optimization

• In addition to his remarkable work in optimization, Davidon
was a peace activist (see the book “The Burglary”)

7



Quasi-Newton template

Let x(0) ∈ Rn, B(0) � 0. For k = 1, 2, 3, . . ., repeat:

1. Solve B(k−1)∆x(k−1) = −∇f(x(k−1))

2. Update x(k) = x(k−1) + tk∆x
(k−1)

3. Compute B(k) from B(k−1)

Different quasi-Newton methods implement Step 3 differently. As
we will see, commonly we can compute (B(k))−1 from (B(k−1))−1

Basic idea: as B(k−1) already contains info about the Hessian, use
suitable matrix update to form B(k)

Reasonable requirement for B(k):

∇f(x(k)) = ∇f(x(k−1)) +B(k)(x(k) − x(k−1))

8



Secant equation

We can equivalently write latter condition as

∇f(x+) = ∇f(x) +B+(x+ − x)

Letting y = ∇f(x+)−∇f(x), and s = x+ − x this becomes

B+s = y

This is called the secant equation

In addition to the secant equation, we want:

• B+ to be symmetric

• B+ to be “close” to B

• B � 0⇒ B+ � 0

9



Symmetric rank-one update

Let’s try an update of the form

B+ = B + auuT

The secant equation B+s = y yields

(auT s)u = y −Bs

This only holds if u is a multiple of y −Bs. Putting u = y −Bs,
we solve the above, a = 1/(y −Bs)T s, which leads to

B+ = B +
(y −Bs)(y −Bs)T

(y −Bs)T s

called the symmetric rank-one (SR1) update

10



How can we solve B+∆x+ = −∇f(x+), in order to take next
step? In addition to propagating B to B+, let’s propagate
inverses, i.e., C = B−1 to C+ = (B+)−1

Sherman-Morrison formula:

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u

Thus for the SR1 update the inverse is also easily updated:

C+ = C +
(s− Cy)(s− Cy)T

(s− Cy)T y

In general, SR1 is simple and cheap, but has key shortcoming: it
does not preserve positive definiteness

11



Broyden-Fletcher-Goldfarb-Shanno update

Instead of a rank-one update to B, let’s try a rank-two update

B+ = B + auuT + bvvT

Using secant equation B+s = y gives

y −Bs = (auT s)u+ (bvT s)v

Setting u = y, v = Bs and solving for a, b we get

B+ = B − BssTB

sTBs
+
yyT

yT s

called the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update

12



Woodbury formula (generalization of Sherman-Morrison):

(A+ UDV )−1 = A−1 −A−1U(D−1 + V A−1U)−1V A−1

Applied to our case, with

U = V T =
[
Bs y

]
, D =

[
−1/(sTBs) 0

0 1/(yT s)

]

then after some algebra we get a rank-two update on C:

C+ =

(
I − syT

yT s

)
C

(
I − ysT

yT s

)
+
ssT

yT s

The BFGS update is thus still quite cheap, O(n2) per update

13



Positive definiteness of BFGS update

Importantly, unlike SR1, the BFGS update preserves positive
definiteness under appropriate conditions

Assume yT s = (∇f(x+)−∇f(x))T (x+ − x) > 0 (recall that e.g.
strict convexity will imply this condition) and C � 0

Then consider the term

xTC+x =

(
x− sTx

yT s
y

)T
C

(
x− sTx

yT s
y

)
+

(sTx)2

yT s

Both terms are nonnegative; second term is only zero when
sTx = 0, and in that case first term is only zero when x = 0

14



Davidon-Fletcher-Powell update

Alternatively, compute a rank-two update directly on inverse C

C+ = C + auuT + bvvT .

Using secant equation s = C+y, setting u = s, v = Cy, and
solving for a, b gives

C+ = C − CyyTC

yTCy
+
ssT

yT s

Called the Davidon-Fletcher-Powell (DFP) update

Pre-dates BFGS, with same beneficial properties (preserves positive
definiteness of Hessian, O(n2) computation), but not often used
anymore

15



Broyden class

SR1, BFGS, and DFP are some of numerous possible
quasi-Newton updates. The Broyden class of updates is defined by:

B+ = (1− φ)B+
BFGS + φB+

DFP, φ ∈ R

By putting v = y/(yT s)−Bs/(sTBs), we can rewrite the above as

B+ = B − BssTB

sTBs
+
yyT

yT s
+ φ(sTBs)vvT

Note:

• BFGS corresponds to φ = 0

• DFS corresponds to φ = 1

• SR1 corresponds to φ = yT s/(yT s− sTBs)

16



Convergence analysis

Assume that f convex, twice differentiable, having dom(f) = Rn,
and additionally

• ∇f is Lipschitz with parameter L

• f is strongly convex with parameter m

• ∇2f is Lipschitz with parameter M

(same conditions as in the analysis of Newton’s method)

Theorem: Both BFGS and DFP, with backtracking line search,
converge globally. Furthermore, for all k ≥ k0,

‖x(k) − x?‖2 ≤ ck‖x(k−1) − x?‖2

where ck → 0 as k →∞. Here k0, ck depend on L,m,M

This is called local superlinear convergence

17



Example: Newton versus BFGS

Example from Vandenberghe’s lecture notes: Newton versus BFGS
on LP barrier problem, for n = 100, m = 500

min
x

cTx−
m∑

i=1

log(bi − aTi x)

Example

minimize cTx �
mX

i=1

log(bi � aT
i x)

n = 100, m = 500

0 2 4 6 8 10 12
10�12

10�9

10�6

10�3

100

103

k

f
(x

k
)
�

f
?

Newton

0 50 100 150
10�12

10�9

10�6

10�3

100

103

k

f
(x

k
)
�

f
?

BFGS

• cost per Newton iteration: O(n3) plus computing r2f(x)

• cost per BFGS iteration: O(n2)

Quasi-Newton methods 2-10

Recall Newton update is O(n3), quasi-Newton update is O(n2).
But quasi-Newton converges in less than 100 times the iterations

18



Implicit-form quasi-Newton

For large problems, quasi-Newton updates can become too costly

Basic idea: instead of explicitly computing and storing C, compute
an implicit version of C by maintaining all pairs (y, s)

Recall BFGS updates C via

C+ =

(
I − syT

yT s

)
C

(
I − ysT

yT s

)
+
ssT

yT s

Observe this leads to

C+g = p+ (α− β)s, where

α =
sT g

yT s
, q = g − αy, p = Cq, β =

yT p

yT s

19



We see that C+g can be computed via two loops of length k (if
C+ is the approximation to the inverse Hessian after k iterations):

1. Let q = −∇f(x(k))

2. For i = k − 1, . . . , 0:

(a) Compute αi = (s(i))T q/((y(i))T s(i))
(b) Update q = q − αy(i)

3. Let p = C(0)q

4. For i = 0, . . . , k − 1:

(a) Compute β = (y(i))T p/((y(i))T s(i))
(b) Update p = p+ (αi − β)s(i)

5. Return p

20



Limited memory BFGS

Limited memory BFGS (LBFGS) simply limits each of these loops
to be length m:

1. Let q = −∇f(x(k))

2. For i = k − 1, . . . , k −m:

(a) Compute αi = (s(i))T q/((y(i))T s(i))
(b) Update q = q − αy(i)

3. Let p = C̄(k−m)q

4. For i = k −m, . . . , k − 1:

(a) Compute β = (y(i))T p/((y(i))T s(i))
(b) Update p = p+ (αi − β)s(i)

5. Return p

In Step 3, C̄(k−m) is our guess at C(k−m) (which is not stored). A
popular choice is C̄(k−m) = I, more sophisticated choices exist

21



Stochastic quasi-Newton methods

Consider now the problem

min
x

Eξ[f(x, ξ)]

for a noise variable ξ. Tempting to extend previous ideas and take
stochastic quasi-Newton updates of the form:

x(k) = x(k−1) − tkC(k−1)∇f(x(k−1), ξk)

But there are challenges:

• Can have at best sublinear convergence (recall lower bound by
Nemirovski et al.) So is additional overhead of quasi-Newton,
worth it, over plain SGD?

• Updates to C depend on consecutive gradient estimates; noise
in the gradient estimates could be a hindrance

22



The most straightforward adaptation of quasi-Newton methods is
to use BFGS (or LBFGS) with

s(k−1) = x(k) − x(k−1), y(k−1) = ∇f(x(k), ξk)−∇f(x(k−1), ξk)

The key is to use the same noise variable ξk in the two stochastic
gradients. This is due to Schraudolph et al. (2007)

More recently, Byrd et al. (2015) propose a stochastic version of
LBFGS with three main changes:

• Perform an LBFGS update only every L iterations

• Compute s to be an average over L last search directions

• Compute y using Hessian approximation based on sampling

With proper tuning, either approach can give improvements over
SGD

23



Example from Byrd et al. (2015):

the particular implementation [13] of one of the coordinate descent (CD) methods of
Tseng and Yun [26].

Figure 1 reports the performance of SGD (with � = 7) and SQN (with � = 2),
as measured by accessed data points. Both methods use a gradient batch size of
b = 50; for SQN we display results for two values of the Hessian batch size bH , and
set M = 10 and L = 10. The vertical axis, labeled fx, measures the value of the
objective (4.1); the dotted black line marks the best function value obtained by the
coordinate descent (CD) method mentioned above. We observe that the SQN method
with bH = 300 and 600 outperforms SGD, and obtains the same or better objective
value than the coordinate descent method.

0 0.5 1 1.5 2 2.5 3

x 10
5

10
−2

10
−1

10
0

fx versus accessed data points

adp

fx

 

 
SGD: b = 50, β = 7

SQN: b = 50, β = 2, bH = 300

SQN: b = 50, β = 2, bH = 600

CD approx min

SQN vs SGD on Synthetic Binary Logistic Regression
with n = 50 and N = 7000

Figure 1: Illustration of SQN and SGD on the synthetic dataset. The dotted black
line marks the best function value obtained by the coordinate descent (CD) method.
For SQN we set M = 10, L = 10 and bH = 300 or 600.

16

24



References and further reading

• L. Bottou, F. Curtis, J. Nocedal (2016), “Optimization
methods for large-scale machine learning”

• R. Byrd, S. Hansen, J. Nocedal, Y. Singer (2015), “A
stochastic quasi-Newton method for large-scale optimization”

• J. Dennis and R. Schnabel (1996), “Numerical methods for
unconstrained optimization and nonlinear equations”

• J. Nocedal and S. Wright (2006), “Numerical optimization”,
Chapters 6 and 7

• N. Schraudolph, J. Yu, S. Gunter (2007), “A stochastic
quasi-Newton method for online convex optimization”

• L. Vandenberghe, Lecture notes for EE 236C, UCLA, Spring
2011-2012

25


