Stochastic Gradient Descent

Ryan Tibshirani
Convex Optimization 10-725

Last time: proximal gradient descent

Consider the problem
min g(z) + h(x)
x
with g, h convex, g differentiable, and h “simple” in so much as

1
prox,(x) = argmin 2—t]|x — 2|13 + h(2)
z

is computable. Proximal gradient descent: let 2(?) € R™, repeat:
) = prox;, (x(k_l) — thg(x(k_l))), k=1,2,3,...
Step sizes t; chosen to be fixed and small, or via backtracking

If Vg is Lipschitz with constant L, then this has convergence rate
O(1/€). Lastly we can accelerate this, to optimal rate O(1//€)

Outline

Today:
e Stochastic gradient descent
e Convergence rates
e Mini-batches
e Early stopping

Stochastic gradient descent

Consider minimizing an average of functions
T
mxin m ; fi(z)
As V", filz) =300, Vfi(x), gradient descent would repeat:

2B = =1 g va (DY), k=1,2,3,...

In comparison, stochastic gradient descent or SGD (or incremental
gradient descent) repeats:

a®) = gk g Vfik(l‘(kil))u k=1,2,3,...

where i, € {1,...m} is some chosen index at iteration k

Two rules for choosing index 7, at iteration k:
e Randomized rule: choose ij, € {1,...m} uniformly at random
e Cyclic rule: choose i =1,2,...m,1,2,...m,...

Randomized rule is more common in practice. For randomized rule,
note that

E[V fi,(2)] = V()

so we can view SGD as using an unbiased estimate of the gradient
at each step

Main appeal of SGD:

e lteration cost is independent of m (number of functions)

e Can also be a big savings in terms of memory useage

Example: stochastic logistic regression

Given (z;,v;) € RP x {0,1}, i = 1,...n, recall logistic regression:

min £(8) =+ ((— wiaT B+ log(1 + exp(a? 9)))

n
i=1

fi(B)

Gradient computation Vf£(3) = 13" | (y; — pi(8))a; is doable

n
when n is moderate, but not when n is huge

Full gradient (also called batch) versus stochastic gradient:
e One batch update costs O(np)
¢ One stochastic update costs O(p)

Clearly, e.g., 10K stochastic steps are much more affordable

Small example with n = 10, p = 2 to show the “classic picture” for
batch versus stochastic methods:

g4/ : %2#%
Blue: batch steps, O(np)
Red: stochastic steps, O(p)
Rule of thumb for stochastic
methods:

10

e generally thrive far
from optimum

-10

o generally struggle close
8 to optimum

-20 -10 0 10 20

Step sizes

Standard in SGD is to use diminishing step sizes, e.g., tx = 1/k,
fork=1,2,3,...

Why not fixed step sizes? Here's some intuition. Suppose we take
cyclic rule for simplicity. Set ¢ =t for m updates in a row, we get:

pRm) k) Z ¥ fi(z+iD)

=1

Meanwhile, full gradient with step size ¢ would give:

(k+1 _thfZ

The difference here: t 37 [V f;(z**+=1)) — ¥ f;(x*))], and if we
hold ¢ constant, this difference will not generally be going to zero

Convergence rates

Recall: for convex f, gradient descent with diminishing step sizes
satisfies

f@®) = fr=0(1/VEk)
When f is differentiable with Lipschitz gradient, we get for suitable
fixed step sizes

F@®) =1 =0(1/k)
What about SGD? For convex f, SGD with diminishing step sizes
satisfies?
E[f(z™)] - f* = 0(1/Vk)

Unfortunately this does not improve when we further assume f has
Lipschitz gradient

'E.g., Nemirosvki et al. (2009), “Robust stochastic optimization approach
to stochastic programming”

Even worse is the following discrepancy!

When f is strongly convex and has a Lipschitz gradient, gradient
descent satisfies

Fa™) = = 0(ch)
where ¢ < 1. But under same conditions, SGD gives us

E[f(@™)] - f* = O(1/k)

So stochastic methods do not enjoy the linear convergence rate of
gradient descent under strong convexity

2

What can we do to improve SGD?

2E g., Nemirosvki et al. (2009), “Robust stochastic optimization approach
to stochastic programming”

10

Mini-batches

Also common is mini-batch stochastic gradient descent, where we
choose a random subset I, C {1,...m}, of size |Ix| = b < m, and
repeat:

2B — g (k=1) ZVf@ =1y k=1,2,3,...
Zefk
Again, we are approximating full graident by an unbiased estimate:
1
E[; > Vhi)| = V1
1ely

Using mini-batches reduces the variance of our gradient estimate
by a factor 1/b, but is also b times more expensive

11

Back to logistic regression, let's now consider a regularized version:

n

1 T A
i — Z (— gzl B+ log(1 + €% 5)) + §||ﬁ||%

1=

Write the criterion as

- T A
FB) =S FB) Si(B) =yl B+ log(1 +¢P) + J B3
=1

Full gradient computation is Vf(8) = %Z?Zl (yz —pi(ﬁ))xi + 8.

Comparison between methods:
e One batch update costs O(np)
¢ One mini-batch update costs O(bp)
e One stochastic update costs O(p)

12

Example with n = 10,000, p = 20, all methods use fixed step sizes:

— Full
—— Stochastic
—— Mini-batch, b=10
Mini-batch, b=100
n
©
S
X
ha o
c o
2 o
g
o
n
LO_ —
o
(=]
n
S

0 10 20 30 40 50

Iteration number k

What's happening? Now let's parametrize by flops:

Criterion fk

0.65

0.60

0.55

0.50

ull

tochastic
ini-batch, b=10
ini-batch, b=100

le+02

T
1le+04

Flop count

1e+06

14

Finally, looking at suboptimality gap (on log scale):

[se]
?
[}
-
I
k4]
T
£ ©
=% C|> _
5 3
c
ke
g
o
(o2}
9
(%}
—
Full
—— Stochastic
—— Mini-batch, b=10
N —— Mini-batch, b=100
é I T T T T T

0 10 20 30 40 50

Iteration number k

15

End of the story?

Short story:

e SGD can be super effective in terms of iteration cost, memory
e But SGD is slow to converge, can’t adapt to strong convexity

e And mini-batches seem to be a wash in terms of flops (though
they can still be useful in practice)

Is this the end of the story for SGD?

For a while, the answer was believed to be yes. Slow convergence
for strongly convex functions was believed inevitable, as Nemirovski
and others established matching lower bounds ... but this was for a
more general stochastic problem, where f(z) = [F(z,£) dP(€)

New wave of “variance reduction” work shows we can modify SGD
to converge much faster for finite sums (more later?)

16

SGD in large-scale ML

SGD has really taken off in large-scale machine learning

In many ML problems we don’t care about optimizing to high
accuracy, it doesn't pay off in terms of statistical performance

Thus (in contrast to what classic theory says) fixed step sizes
are commonly used in ML applications

One trick is to experiment with step sizes using small fraction
of training before running SGD on full data set ... many other
heuristics are common3

Many variants provide better practical stability, convergence:
momentum, acceleration, averaging, coordinate-adapted step
sizes, variance reduction ...

See AdaGrad, Adam, AdaMax, SVRG, SAG, SAGA ... (more
later?)

3E.g., Bottou (2012), “Stochastic gradient descent tricks”

17

Early stopping

Suppose p is large and we wanted to fit (say) a logistic regression
model to data (z;,y;) € R x {0,1},i=1,...n

We could solve (say) ¢5 regularized logistic regression:

1 n
érel]i]g) - Z (—yixl B+ log(1 + exiTﬁ)) subject to [|B]l2 <t
1=

We could also run gradient descent on the unregularized problem:

n

. 1 T zI'B
gel]l]g) EZ<—yszi/B+log(1+e))

and stop early, i.e., terminate gradient descent well-short of the
global minimum

18

Consider the following, for a very small constant step size e:

e Start at (%) = 0, solution to regularized problem at t = 0

e Perform gradient descent on unregularized criterion

n

_ 1 _
B =g —e =% (i~ pi(BY)i, k=123,
i=1
(we could equally well consider SGD)

e Treat 5(%) as an approximate solution to regularized problem
with t = || 3%)||

This is called early stopping for gradient descent. Why would we
ever do this? It's both more convenient and potentially much more
efficient than using explicit regularization

19

An intruiging connection

When we solve the /5 regularized logistic problem for varying ¢ ...
solution path looks quite similar to gradient descent path!

Example with p = 8, solution and grad descent paths side by side:

o | ©
S} [S)

0.6
0.6

0.4

0.4

Coordinates
0.2
0.2

0.0
0.0

-0.2
Il

~0.4
|

~04
|

Lots left to explore

e Connection holds beyond logistic regression, for arbitrary loss

e In general, the grad descent path will not coincide with the /o
regularized path (as e — 0). Though in practice, it seems to
give competitive statistical performance

e Can extend early stopping idea to mimick a generic regularizer
(beyond £5)*

e There is a lot of literature on early stopping, but it's still not
as well-understood as it should be

e Early stopping is just one instance of implicit or algorithmic
regularization ... many others are effective in large-scale ML,
they all should be better understood

*Tibshirani (2015), “A general framework for fast stagewise algorithms”

21

References and further reading

e D. Bertsekas (2010), “Incremental gradient, subgradient, and
proximal methods for convex optimization: a survey”

e A. Nemirovski and A. Juditsky and G. Lan and A. Shapiro
(2009), “Robust stochastic optimization approach to
stochastic programming”

e R. Tibshirani (2015), “A general framework for fast stagewise
algorithms”

22

