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Shubhranshu Shekhar scribed from 12.1 to 12.4. Xiukun Huang scribed from 12.5 to 12.6. Yuan Wang
scribed from 12.7 to 12.8.

In today’s scribe, we will talk about duality in general convex optimization problems beyond Linear Programs.
We will introduce Lagrangian dual function that would allow us to define a dual problem (which is convex)
for general optimization problems including non-convex problems, and the solution to which provides a
lower-bound on the solution to the primal problem.

12.1 Review: Duality in Linear Programs

A linear program can be transformed into a dual problem by introducing a dual variable for each constraint
as: Given c ∈ Rn, A ∈ Rm×n, b ∈ Rm, G ∈ Rr×n, h ∈ Rr:

min
x

cTx

subject to Ax = b

Gx ≤ h

Primal LP

max
u,b

− bTu− hT v

subject to −ATu−GT v = c

v ≥ 0

Dual LP

Dual LP has few interesting features such as - (i) is an LP maximization, (ii) a dual variable is introduced
for each constraint in primal (iii) solution to max dual ≤ solution of min primal (tightest possible bound by
construction).

Explanation: for any u and v ≥ 0, and x primal feasible,

uT (Ax− b)︸ ︷︷ ︸
=0

+vT

≤0︷ ︸︸ ︷
(Gx− h) ≤ 0

=⇒ (−ATu−GT v)Tx ≥ −bTu− hT v

So if c = −ATu−GT v, we get a bound on primal optimal value. Thus the tightest possible bound is obtained
by maximizing −bTu− hT v.

Note: If the primal criterion would have been quadratic, then by construction we wouldn’t be able to
construct dual.
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12.2 Alternate perspective on LP duality

This alternate perspective reproduces the same dual, but is actually completely general and applies to
arbitrary optimization problems (even non-convex ones). Consider the Primal LP defined above. For any u
and v ≥ 0, and x ∈ Rn primal feasible

cTx ≥ cTx+ uT (Ax− b) + vT (Gx− h) := L(x, u, v)

So if C denotes primal feasible set, f∗ primal optimal value, then we have

f∗ ≥ min
x∈C

L(x, u, v) ≥ min
x
L(x, u, v) := g(u, v)

Here, g(u, v) =

{
−bTu− hT v if c = −ATu−GT v
−∞ otherwise

In other words, for any u and v ≥ 0, g(u, v) is the lower bound on f∗. To find the tightest lower bound
among all, we solve the Dual LP defined above.

12.3 The Lagrangian

Consider a general minimization problem

min
x

f(x)

subject to hi(x) ≤ 0, i = 1, . . . ,m

lj(x) = 0, j = 1, . . . , r

We introduce new variables u ∈ Rm, and v ∈ Rr, with u ≥ 0, and define the Lagrangian to be

L(x, u, v) = f(x) +

m∑
i=1

uihi(x) +

r∑
j=1

vj lj(x)

(implicitly, we define L(x, u, v) = −∞ for u < 0).

Observe that for a feasible x, and for any u ≥ 0 and v,

L(x, u, v) = f(x) +

m∑
i=1

ui hi(x)︸ ︷︷ ︸
≤0

+

r∑
j=1

vj lj(x)︸︷︷︸
=0

≤ f(x)

This property is illustrated in the Fig 12.1

12.4 Lagrange Dual Function

Let C denote primal feasible set, f∗ denote primal optimal value. Minimizing L(x, u, v) over all xRn gives
a lower bound on f∗:

f∗ ≥ min
x∈C

L(x, u, v) ≥ min
x
L(x, u, v) := g(u, v)

Similar to LP dual function, we call g(u, v) Lagrangian dual function, and it gives a lower bound on f∗ for
any u ≥ 0 and v, called dual feasible u, v. This is illustrated in Fig It is to note that the relation holds, in
general, for any optimization problem.
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Figure 12.1: A one-dimensional optimization problem, with objective f(x) (solid line). The constraint
h(x) ≤ 0 shown as dashed line/curve, thus the feasible range of x is approximately [0.46, 0.46]. Each dotted
line/curve represents a Lagrangian L(x, u) for different choices of u ≥ 0. Note that these lie below the solid
line within the feasible region.

12.5 Lagrange Dual Problem

Consider quadratic program:

min
x

1

2
xTQx+ cTx

s.t.Ax = b, x ≥ 0

when Q � 0. Lagrangian:

L(x, u, v) =
1

2
xTQx+ cTx− uTx+ vT (Ax− b)

Because we know:

Qx = −(c− u+AT v)

x = −Q−1(c− u+AT v)

Put this x back into Lagrangian.
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Figure 12.2: This figure shows the Lagrangian dual function g(λ) (solid line) as a function of the dual variable
λ (our u variable). The optimal value of the primal objective function is shown by the dashed line. Note
that actual optimal value is > Lagrange optimal because, in this case, primal is non-convex.

g(u, v) = min
x
L(x, u, v)

=
1

2
(c− u+AT v)TQ−TQQ−1(c− u+AT v)− (c− u+AT v)TQ−1(c− u+AT v)− vT b

= −1

2
(c− u+AT v)TQ−1(c− u+AT v)− bT v

For any u ≥ 0 and any v, this is lower a bound on primal optimal value f∗.

Same problem:

min
x

1

2
xTQx+ cTx

s.t.Ax = b, x ≥ 0

when Q � 0. Lagrangian:

L(x, u, v) =
1

2
xTQx+ cTx− uTx+ vT (Ax− b)

Similar as before, we know:

Qx = −(c− u+AT v)

If −(c − u + AT v) /∈ col(Q), then L(x, u, v) may be negative infinity. If −(c − u + AT v) ∈ col(Q), then
x = −Q+(c− uAT v) where Q+ is the generalized inverse of Q.
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Figure 12.3: Slide page 10

The blue point in figure 12.3 is g∗ which is on the bound. This is called complementary slackness which will
be covered in KKT.

12.6 Weak Duality

Weak duality is that: if primal optimal value is f∗, and dual optimal value is g∗, then:

f∗ ≥ g∗

Note that this always holds even if the primal problem is nonconvex. There is an example on the slide page
13 and page 14.

12.7 Strong Duality

When you construct a dual where the primal criterion matches the dual criterion:

f∗ = g∗

This means that the best bound that can be obtained through the Lagrange dual function is tight. Strong
duality does not, in general, hold. One of the conditions where the strong duality holds is,
Slater’s condition: if the primal is a convex problem (i.e., f and h1, . . . , hm are convex, and l1, . . . , lr
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are affine), and there exists at least one strictly feasible x ∈ Rn, meaning

h1(x) < 0, . . . , hm(x) < 0 and l1(x) = 0, . . . , lr(x) = 0

that strong duality holds (Proof refers to Boyd & V). An important refinement: strict inequalities only need
to hold over functions hi that are not affine.

12.7.1 Slater’s condition on LP cases

Fact: The dual of the dual problems is the primal problems. This is true for a lot of convex problems. (The
sufficient condition is convexity, closeness of the constraints functions. This will be discussed later.)

Apply Slater’s condition to P: if the primal problem is feasible, then f∗ = g∗.
Apply Slater’s condition to D: if the dual is feasible then g∗ = f∗.
Put together the two statements from above, we get strong duality in linear programs. Strong duality fails
only when BOTH primal and dual are infeasible (which would be hard to construct).

12.7.2 Example: SVM dual

The SVM problem

min
β,β0,ξ

1

2
‖β‖22 + C

n∑
i=1

ξ

subject to ξi ≥ 0, i = 1, . . . , n

yi(xiβ + β0) ≥ 1− ξi, i = 1, . . . , n

Introducing the dual variables, v, w ≥ 0, we form the Lagrangian:

L(β0, β, ξ, v, w) =
1

2
‖β‖22 + C

n∑
n=1

ξi −
n∑
i=1

vξi +

n∑
n=1

wi(1− ξi − yi(xTi β + β0))

=
1

2
βTβ + (C1− v − w)T ξ + (X̃Tw)Tβ + yTwβ0

ξi ≥ 0 vi

yi(x
T
i β + β0) ≥ 1− ξi wi

minL(β0, β, ξ, v, w) =

{
− 1

2wX̃X̃
Tw + 1Tw if yTw = 0, w = C1− v
−∞

Therefore the dual problem is: X̃X̃T is the kernal matrix of the kernel SVM.

A more practical solution: learn primal solution from dual solution. WIll revisit SVM when learning about
KKT.
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12.8 Duality Gap

Given primal feasible x and dual feasible u, v, duality gap is the quantity f(x)− g(u, v). We also have that
f(x)−f∗ ≤ f(x)−g(u, v). So if the duality gap is zero, then x is primal optimal (and similarly, u, v are dual
optimal). It provides an upper bound on distance from the optimality, which can provide an upper bounds
for stopping criteria.


