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13.1 Review: KKT conditions

KKT conditions necessary for optimality under strong duality, and always sufficient:

1. stationarity: gradient of Lagrangian is 0 (or similar for subgradients)

2. complementary slackness

3. primal feasibility

4. dual feasibility

We looked at two uses of duality:

1. The duality gap can be used to determine optimality, and can be used as a stopping criterion in
algorithms.

f(x)− f∗ ≤ f(x)− g(u, v)

g∗ − g(u, v) ≤ f(x)− g(u, v)

2. Under strong duality, given optimal dual variables, we can simply solve the Lagrangian for the primal
variables, fixing these optimal dual variables.

min
x
L(x, u∗, v∗)

Often, solutions of this unconstrained problem give an explicit characterization of primal solutions
from dual solutions. If the solution is unique, it must be the primal solution, which is helpful when
the dual is easier to solve than the primal.

Example: B & V (pg 245)

min
x

n∑
i=1

fi(xi) subject to aTx = b
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where each fi : R → R is smooth, strictly convex. The Dual function can be written using the conjugate
function.

g(v) = min
x

n∑
i=1

fi(xi) + v(b− aTx)

= bv +

n∑
i=1

min
xi

(fi(xi)− aivxi)

= bv −
n∑
i=1

f∗i (aiv) Where f∗i (aiv) = max
xi

(fi(xi)− aivxi)

This allows us to decompose the problem into n separate (i.e., easy) problems. Once we have v∗, solving for
x∗ is easy:

min
x

n∑
i=1

(fi(xi)− aiv∗xi)

Since each fi is strictly convex, we can simply compute the derivative and set equal to 0 for each i:

∇fi(xi) = aiv
∗

13.2 Dual norms

Given a norm ‖x‖, we define the dual norm as:

‖x‖∗ , max
‖z‖≤1

zTx

Some useful facts about dual norms:

• `p norm dual: (‖x‖p)∗ = ‖x‖q, where 1
p + 1

q = 1. For example, p = 2 and q = 2 are dual pairs, as are
p = 1 and q =∞

• Trace norm dual: (‖X‖tr)∗ = ‖X‖op = σ1(X)

• The dual norm of the dual norm is the original norm!

Lemma 13.1 A “generalized Holder” inequality gives us the following:

|zTx| ≤ ‖z‖‖x‖∗

Proof: Let y = z
‖z‖ , then

|yTx| ≤ max
‖w‖≤1

wTx = ‖x‖∗

|zTx|
‖z‖

≤ ‖x‖∗
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13.3 Conjugate functions

Definition: A closed function is one where all sublevel sets are closed. That is, the set {x : f(x) ≤ t} is
closed for all t.

Definition: For a function f : Rn → R, define its conjugate1 f∗ : Rn → R as

f∗(y) = max
x

yTx− f(x)

This should be interpreted as the maximum gap between the linear function yTx and f(x). The conjugate
is always convex (pointwise max over convex functions). Conjugate functions satisfy various properties:

• Fenchel’s inequality:
f(x) + f∗(y) ≥ xT y ∀x, y

Proof: By straight use of the definition of the conjugate,

f∗(y) = max
z

yT z − f(z) ≥ yTx− f(x) ∀x, y

f∗(y) + f(x) ≥ yTx ∀x, y

• For any f , f∗∗(y) < f(y) for all y.

• If f is also closed and convex, then f∗∗ = f .

• If f is closed and convex, then for any x, y:

x ∈ ∂f∗(x) ⇐⇒ y ∈ ∂f(x)

⇐⇒ f(x) + f∗(y) = xT y

For example, if f and f∗ are differentiable, then (∇f)−1 = ∇f∗. Said another way,

x = ∇f∗(y) ⇐⇒ y = ∇f(x)

• If f(u, v) = f1(u) + f2(v), then
f∗(w, z) = f∗1 (w) + f∗2 (z)

Examples:

• Simple quadratic: f(x) = 1
2x

TQx, where Q � 0 (function striclty concave). Then, y = Q−1x

f∗(y) =
1

2
yTQ−1y

• Indicator Function: f(x) = IC(x). Then,

f∗(y) = I∗C(y) = max
x∈C

yTx (I∗C is called the support function)

• Norm: f(x) = ‖x‖, then
f∗(y) = I{z:‖z‖∗≤1}(y)

This is a simple application of the conjugate of the indicator function (dual of the norm is of the form
of conjugate of indicator)

1Physics people call this the Legendre transformfor differentiable f .
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Lasso dual

Given y ∈ Rn, X ∈ Rn×p, the lasso problem is

min
β

1

2
‖y −Xβ‖22 + λ‖β‖1

Its dual is simply the solution, f∗ (a constant). To get something more interesting, we will transform the
primal into an equivalent problem:

min
β,z

1

2
‖y − x‖22 + λ‖β‖1 s.t. z = Xβ

The dual function of the transformed primal is

g(u) = min
β,z

1

2
‖y − z‖22 + λ‖β‖1 + uT (z −Xβ)

= min
z

[
1

2
‖y − z‖22 + uT z

]
+ min

β

[
λ‖β‖1 − uTXβ

]
=

1

2
‖y‖22 −

1

2
‖y − u‖22 − I{v:‖v‖∞≤1}

(
XTu

λ

)
For the last line notice that, for the left minimization term, we have that z∗ = y − u. Replacing in the
argument and completing the square (adding ‖y‖22) we get the desired expression. For the right minimization
term, we used the fact that

min
β

λ‖β‖1 − uTXβ = −λmax
β
‖β‖1 −

uTX

λ
β

Which is the conjugate of ‖ · ‖1 evaluated at uTX
λ . We also used the fact that λIC(x) = IC(x) for all C and

x (the function is either 0 or ∞, so scaling doesn’t do anything). Putting it together we get the third line.
Thus, the lasso dual is

max
u

1

2

(
‖y‖22 − ‖y − u‖22

)
s.t. ‖XTu‖∞ ≤ λ

⇐⇒ min
u
‖y − u‖22 s.t. ‖XTu‖∞ ≤ λ

Slater’s condition holds (as primal is unconstrained) so strong duality also holds. Thus, given the dual
solution u, we can compute the lasso solution as Xβ = y − u.
WARNING: The optimal value of the last problem, given the transformation done, is not the same as the
optimal value of the LASSO objective. So we need to be careful when computing a stopping rule based on
the duality gap.

Conjugates and dual problems

Note that the definition of the conjugate looks a lot like a Lagrangian:

−f∗(u) = min
x
f(x)− uTx

If the primal problem is maxx f(x) + g(z) subject to x = z, then the dual problem is

max
u
−f∗(u)− g∗(u)
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We can use the dual to remove linear transforms. In particular, consider the following problem:

min
x
f(x) + g(Ax)

The dual (by adding a constraint that Ax = z) is:

max
u

f(ATu) s.t. ‖u‖∗ ≤ 1

13.4 Dual tricks and subtleties

WARNING: We often simplify the dual, but forget that the value of the simplified dual may be different
from the original dual.

WARNING: The dual function we obtain depends on how we introduce dummy variables with equality
constraints. Usually there are many ways to do this and even though they are equivalent (if strong duality
holds), some might have more desirable properties than others (so we need to consider all cases).


