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Lecturer: Lecturer: Ryan Tibshirani Scribes: Matthew Levine, Junxian He

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

This lecture’s notes illustrate some uses of various LATEX macros. Take a look at this and imitate.

17.1 Quasi-Newton Methods

Quasi-Newton methods are motivated to mitigate the expensive computation in vanilla Newton method
(regarding Hessian matrix), and instead follow the procedure as:

• Solve B(k−1)∆x(k−1) = −∇f(x(k−1))

• Update x(k) = x(k−1) + tk∆x(k−1)

• Compute B(k) from B(k−1)

Since B(k−1) already contains info about the Hessian, usually we use suitable matrix update to form B(k) =
g(B(k−1)), different methods will implement this g function differently, and commonly we can also compute
(B(k))−1 from (B(k−1))−1. Therefore, we can maintain B(k) (or (B(k))−1) in memory during training, and
obtain new B(k) (or (B(k))−1) from the last step, which results in a much cheaper procedure than original
Newton methods.

17.1.1 Requirements of B+

• B+s = y, where y = ∇f(x+)−∇f(x), s = x+ − x (secant equation)

• B+ is symmetric

• B+ is “close” to B

• B � 0⇒ B+ � 0

Next we will introduce several different Quasi-Newton methods.

17.1.2 Symmetric Rank-One (SR1) Update

• Rank-one update form: B+ = B + auuT

• Secant equation B+s = y ⇒ (auT s)u = y −Bs
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• Solve the above we obtain B+ = B + (y−Bs)(y−Bs)T

(y−Bs)T s

• Given Sherman-Morrison formula:

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u
,

we can derive the update form for inverse of B which we define as C = B−1:

C+ = C +
(s− Cy)(s− Cy)T

(s− Cy)T y

• SR1 is simple and cheap, but does NOT preserve positive definiteness

17.1.3 Broyden-Fletcher-Goldfarb-Shanno (BFGS) Update

• Rank-two update form: B+ = B + auuT + bvvT

• Secant equation B+s = y ⇒ y −Bs = (auT s)u+ (bvT s)v

• Set u = y, v = Bs and solve above to obtain B+ = B − BssTB
sTBs

+ yyT

yT s

• Given Woodbury formula:

(A+ UDV )−1 = A−1 −A−1U(D−1 + V A−1U)−1V A−1,

we can derive the update form for inverse of B which we define as C = B−1:

C+ = (I − syT

yT s
)C(I − ysT

yT s
) +

ssT

yT s

• BFGS update is still quite cheap, O(n2) per update

• BFGS preserves positive definiteness under appropriate conditions:

yT s = (∇f(x+)−∇f(x))T (x+ − x) > 0 (A sufficient condition could be strict convexity)

C � 0,

Given the above conditions we consider

xTC+x = (x− sTx

yT s
y)TC(x− sTx

yT s
y) +

(sTx)2

yT s
,

both terms are nonnegative, second term is zero when sTx = 0, and in that case the first term is only
zero when x = 0.

17.1.4 Davidon-Fletcher-Powell (DFP) Update

• Rank-two update directly on inverse C: C+ = C + auuT + bvvT

• Secant equation s = C+y, setting u = s, v = Cy and solving for a, b gives

C+ = C − CyyTC

yTCy
+
ssT

yT s

• Preserves positive definiteness of Hessain, O(n2) computation, but not often used anymore.
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17.2 Broyden Class

All of the methods discussed so far are special cases of the ”Broyden Class”

Theorem 17.1 The Broyden class is the convex combination of the previous classes, BFGS, and DFP.
Exactly, it is

B+ = (1− φ)B+
BFGS + φB+

DFP , φ ∈ R

for an interpolating factor φ

The Broyden class therefore generalizes both BFGS and DFP trivially.

While you could always (non-interestingly) create a more general collection this way, the Broyden class also
generates SR1 for a particular value of φ, namely

φ = yT s/(yT s− sTBs)

Although not discussed, the slides also mention that with

v = y/(yT s)−Bs/(STBs), we can rewrite as

B+ = B − (BssTB)/(sTBs) + (yyT )/(yT s) + φ(sTBs)vvT

The slides note that BFGS corresponds to φ = 0 and DFS corresponds to φ = 1, which can be trivially read
off of the equation.

17.2.1 Student Question 1

Student question (a little hard to hear): how to pick a ”next point”, which seemed to correspond to picking
a value of φ. Professor answered that it was more of a generalization step than an extrapolation tool. Notes
that you can sort of think of the class as a ”rank 3 update” that reduces to rank 2 when terms cleverly
cancel.

Student clarified asking about intuition between picking the next term as in the previous algorithms, professor
answers that the intuition is centered around picking particular rank updates, as motivated the previous
slides.

17.2.2 Student Question 2

Student question: is strict convex assumption a strong one? Professor says is is, and should be expected to
be. Explains Newton’s method works with strict convexity so approximations to Newton’s method should
co-opt that assumption
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17.3 Convergence Analysis

No proofs offered.

Methods attain superlinear convergence. Seen linear for gradient descent and quadratic for Newton’s
method.

17.3.1 Review

Reminder (written in Professor’s notes):

Linear convergence:

‖xk − x∗‖ <= c‖xk−1 − x∗‖

Quadratic convergence

‖xk − x∗‖ <= c‖xk−1 − x∗‖2

Superlinear

‖xk − x∗‖ <= ck‖xk−1 − x∗‖

where ck goes to 0 as k tends to infinity. Not better than quadratic, but does tend to 0.

Analysis would look at iterates similar to the argument in Newton’s method.

Note: Limited memory quasi newton’s method do not have this property.

Slides add (though are only briefly shown in class) that we are assuming ∇f is Lipschitz, that f is strongly
convex, and that ∇2f is Lipschitz. These are the same conditions as the analysis of Newton’s method.

17.3.2 Example

Example shows two graphs where quasi newton does better than Newton’s in toy example. The function
minimized is

cTx−
m∑
i=1

ln(bi − aTi x)

the dimensionality of x is 100, 500 terms in sum. Newton’s method converges in 12 iterations to 0; BFGS
takes 150. Graphs have similar shape.

But, each newton is n3 (1003) but each BFGS is n2. So BFGS used 10x fewer updates for the same
convergence.

Although this is a toy example, professor claims that this is a pattern known in data analysis.
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17.4 Implicit-Form Quasi-Newton

Motivation here is leading to limited memory quasi newton. ”Workhorse” of modern optimization.

Basic idea if n is large (e.g., millions), just forming matrix C is intractable, even for BFGS.

Strategy: iterate form of BFGS updates. After some number of updates, we don’t have to evaluate C directly;
we can look at what C was originally, and apply all of those rank 2 updates from the past.

If the number of steps is much less than the dimensionality, we shouldn’t have to form C.

So, maintain all the previous y and s (difference in gradient and difference in iterates) and compute solutions
to quasi newton recursively.

Observation:

C+ = (1− syT /yT s)C(I − ysT /yT s) + ssT yT s

this falls from the definition.

Derivation left from slides.

17.4.1 IFQN Algorithm

Algorithm is, noting that C+ is computed in two loops of length k where C+ is the approximation to the
inverse Hessian after k iterations,

1 Let q = −∇fx(k)

2 For i = k − 1, ...0

a Compute αi = (s(i)
T

q/((y(i)
T

s(i))

b Update q = q − αy(i)

3 Let p = C(0)q

4 For i = 0, ..., k − 1

a Compute β = (y(i)p/y(i)
T

s(i))

b Update p = p+ (αi − β)s(i)

5 return p

17.4.2 Summary (from Prof. Notes)

Explicit form requires n2 memory (store whole C) and time. After k steps, O(kn2) time

Implicit (Some derivation very lightly sketched in professors notes) In total, O(kn) memory, O(k2n) (total
running over k iterations). If k < n, gain here
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17.4.3 Student question

Note that on the graph before, this probably would be a bad idea since we don’t observe that k < n. Professor
notes, it often isn’t great in practice; we often need more than n steps so algorithmic is more pedagogical
than practical

17.5 LMBFGS

Note that first two letter are acronym; latter 4 are people’s names. Big idea: only look back m steps. Time
complexity O(knm) for an effectively constant (chosen) m; same complexity as gradient descent. Despite
losing some formal convergence guarantees, is considered ”state of the art” for many tasks (least-squares at
a large scale, e.g.). Memory O(nm)

Algorithm is over-viewed on slide 21, but (probably because it does not differ substantially from previous
algorithm in main steps) is not discussed step-by-step

17.5.1 Out of time

Stochastic Newton’s methods exist. Recent papers (referenced on slides as Byrd 2015) attempt them, but
”jury is still out”.


