
10-725/36-725: Convex Optimization Fall 2015

Lecture 19: November 5
Lecturer: Ryan Tibshirani Scribes: Bohan Li, Donghan Yu, Ge Huang

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

19.1 Flops for basic operations

Complexity can be expressed in terms of floating point operations or flops required to find the solution. A
flop serves as a basic unit of computation, which could denote one addition, subtraction, multiplication or
division of floating point numbers. Note that, the flop count is just a rough measure of how expensive an
algorithm can be. Many more aspects need to be taken into account to accurately estimate practical runtime.
And in practical situations, we’re interested in rough, not exact flop counts to measure the complexity of
operations.

In the following sections, we’ll show the flop count of some basic operations.

19.1.1 Vector-vector opertaions

Given vector a, b ∈ Rn:

• Addition a+ b: requires n flops for n element-wise additions.

• Scalar multiplication c · a: requires n flops for n element-wise multiplications.

• Inner product aT b: requires approximately 2n flops for n multiplications and n− 1 additions.

However, as said above, the flop count is just a rough measure of how expensive an algorithm can be. For
example, setting every element of vector a to 1 costs 0 flops.

19.1.2 Matrix-vector opertaions

Given A ∈ Rm×n, b ∈ Rn, consider Ab:

• In general, Ab = (aT1 , a
T
2 , · · · , aTm)T b = (aT1 b, a

T
2 b, · · · , aTmb)T , each row takes 2n flops, then m rows

take 2mn flops in total.

• If A is s-sparse, then the i’th element of Ab is Ab(i) =
∑
j aijbj , (i, j) ∈ S, where S is the index set

of non-zero elements in A. Since |S| = s, the total flop count is 2s. (The worst case is that all the
non-zero elements are in the same row)

19-1

19-2 Lecture 19: November 5

• If A ∈ Rn×n is k-banded, the non-zero elements of each row is 2k, then the total flop count of n row
is 2nk.

• If A =
∑r
i=1 uiv

T
i ∈ Rm×n, Ab =

∑r
i=1 ui(v

T
i b). Calculate mi = vTi b, i = 1, · · · , r costs 2nr flops.

Then scalar multiplication takes mr flops, finally the summation takes mr flops. The total flop count
is 2r(m+ n).

• If A ∈ Rn×n is a permutation matrix, it takes 0 flops to reorder elements in b.

19.1.3 Matrix-matrix product

Given A ∈ Rm×n, B ∈ Rn×p, consider AB:

• In general, AB = A(b1, b2, · · · , bp) = (Ab1, · · · , Abp). For each bi, the product cost 2mn flops. Then
the total flop count is 2mnp.

• If A is s-sparse, it costs 2sp flops. The cost can be further reduced if B is also sparse.

19.1.4 Matrix-matrix-vector product

Given A ∈ Rm×n, B ∈ Rn×p, c ∈ Rp, consider ABc:

• If product is done properly, that is, ABc = A(Bc), the total cost is 2np+2mn. Else if done improperly,
i.e., ABc = (AB)c, the cost is 2mnp+ 2mp!

19.2 Solving linear systems

Given a non-singular square matrix A ∈ Rn×n and a vector b ∈ Rn, consider solving the linear equation,
Ax = b. In others words, we intend to determine the cost of computing x = A−1b. Note that in Newton’s
method, we need to solve ∇2f(x)v = −∇f(x), which is exactly this form.

• In general, it cost n3 flops. This can be a very expensive cost when n is a large number. However, the
complexity of solving linear systems can be reduced for some matrices having special properties.

• If A is diagnal, it just costs n flops, one each for element-wise divisions. x = (b1/a1, · · · , bn/an).

• If A is lower triangular (Aij = 0, j > i), it costs about n2 flops by forward substitution.

x1 = b1/A11

x2 = (b2 −A21x1)/A22

. . .

xn = (bn −An,n−1xn−1 − · · · −An,1x1)/Ann

• If A is upper triangular (Aij = 0, j > i), it costs about n2 flops by back substitution.

• If A is s-sparse, it often costs � n3. However, it is hard to determine the exact order of flops. It
heavily depends on the sparsity structure of the matrix.

Lecture 19: November 5 19-3

• If A is k-banded, it costs about nk2 flops.

• If A is a permutation matrix, which means that A−1 = AT . Then x = AT b costs 0 flops since each row
of A has only one element and x can be obtained from n assignment operations that are free of cost.

19.3 Matrix factorizations

To solve a linear system Ax = b, instead of doing A\b or compute A−1 directly, it is useful to instead factorize
A into product of some structured (orthogonal, triangular, diagonal, or permutation matrices that are easier
to compute inverse) (Ak)′s. Here we are going to introduce another two very useful alternatives, the QR
decomposition and Cholesky decomposition.

19.3.1 QR decomposition

QR decomposition works for a more general case even when the matrix under consideration is not square.
Any matrix A ∈ Rm×n can be decomposed into the form as:

A = QR

where m ≥ n,Q ∈ Rm×n, QTQ = In (orthogonal) , R ∈ Rn×n is upper triangular. Facts about the factor
matrix Q and R:

• The column vectors of Q = [Q1 , Q2 , , Qn] actually forms the orthonormal basis of a n dimensional
subspace of Rm. So it can be treated as orthogonal in a general sense.

• Moreover, if we expand the columns of Q to the whole space as [Q1, Q2, , Qm], then it holds that
the column span of Q = [Qr+1, , Qm] actually forms an orthogonal complementary of col(Q). Then
by the fact that orthogonal matrix preserves vectors norm, we have

xT = xT [Q Q̃][Q Q̃]Tx = xT (QQT + Q̃Q̃T)x = ||QTx||22 + ||Q̃Tx||2

which can simply the optimization problem in many cases.

• The diagonal elements of R are relevant to the rank of A. If rank(A) ≥ r, then the first r diagonal
entries of R are nonzero and span(Q1, , Qr) = col(A) where r ≤ n.

Assuming A is nonsingular and square, we can now solve Ax = b:

• Compute y = QT b in 2n2 flops.

• Solve Rx = y, in n2 flops (back substitution)

So solving costs 3n2 flops

19.3.2 Cholesky decomposition

When the matrix A is symmetric and positive definite, i.e A ∈ Sn++, there exists a unique lower triangular
matrix L such that A = LLT . Moreover, the matrix L is non-singular. Since Cholesky decomposition is a
special case of Gaussian elimination for the positive definite matrices, its computation requires n3/3 flops.
To solve a linear equation Ax = b using Cholesky decomposition, the flop number is given by:

19-4 Lecture 19: November 5

• Compute y = L1b by forward substitution in n2 flops.

• Compute x = (LT)−1y by backward substitution in n2 flops.

So in general, to solve a n dimensional linear equation by a given Cholesky decomposition only needs 2n2

flops.

19.3.3 Computational cost of Cholesky and QR on least square

Here we perform an analysis on the computational cost of both sides. The case studied here is least square
problem shown below as:

minβ∈RP ||y −Xβ||22 → β = (XTX)−1(XT y)

where X ∈ Rnxp, y ∈ Rn.

To solve this linear equation given by the analytical solution, necessary flop numbers are shown in Table
19.1. This shows that Cholesky decomposition is computationally cheaper than QR decomposition.

Figure 19.1: When A is in poor condition, gradient descent will spend a lot of time traversing back and forth
“across the valley”, rather than “down the valley”.

19.4 Linear systems and Sensitivity analysis

From the previous section, it seems that Cholesky decomposition is always better than QR decomposition
computationally. However, as we take the numerical robustness, the performance of QR will win over by
sensitivity analysis. To start with, consider the linear system Ax = b, with nonsingular A ∈ Rn×n. The
singular value decomposition of A is A = UVT, where U,V Rnn are orthogonal, and Σ ∈ Rn×n is diagonal
with elements σ1 ≥ ... ≥ σn > 0.

A could be near a singular matrix B even if its full rank, i.e.,

dist(A,Rk) = minrand(B)=k||A−B||op

could be small for some k ¡ n. We can show with SVD analysis that dist(A,Rk) = σk+1. If the value is
small, solving x = A−1b could be problematic.

Applying SVD we can see that:

x = A−1b = V Σ−1UT b =

n∑
i=1

viu
T
i b

σi

Lecture 19: November 5 19-5

If σi > 0 is small, close to set of rank i-1 matrices, that would pose some problem. In precise sensitivity
analysis: fix some F ∈ Rnxn, f ∈ Rn, solve:

(A+ εF)x(ε) = (b+ εf)

Theorem 9.1 The solution to the perturbed system satisfies:

||x(ε)− x||22
||x||2

≤ κ(A)(ρA + ρb) +O(ε2)

where κ(A) = σ1

σn
is the condition number of A, and ρA = |ε| ||F ||op||A||op , ρb = |ε| ||f ||2||b||2 are the relative errors.

Proof: Differentiating the equation above, let ε = 0, and solving for dx
dε . We have:

dx

dε
(0) = A−1(f − Fx)

where x = x(0).

Apply Taylor expansion around 0,

x(ε) = x+−1 (f − Fx) +O(ε)2

Rearrange and we arrive at the inequality,

||x(ε)− x||22
||x||2

≤ |ε|||A−1||op(
||f ||2
||x||2

+ ||F ||op +O(ε)2

Multiplying and dividing by ||A||Op, and note that κ(A) = ||A||op||A−1op , which proves the result.

In linear systems worse conditioning means great sensitivity.

For least squares problems:minβ∈RP ||y−Xβ||22, Cholesky solves XTXβ = XT y, hence the sensitivity scales
with κ(XTX) = κ(X)2. While QR operates on X without forming XTX, that sensitivity scales with

κ(X) + ρLS × κ(X)2, where ρLS = ||yX |̂|22 .

In summary, Cholesky is cheaper and use less memory, while QR is more stable when ρLS is small and κ(X)
is large.

19.5 Indirect methods

A counterpart to direct methods is indirect methods, which is more aligned with everything so far that we
have learned in this course. These are methods which iteractively produce sequence of estimates x(k), k =
1, 2, 3 They will converge to a solution when k goes to infinity. They are most often used for very large
and sparse systems.

Actually everything that we have learned so far is iterative or indirect rather than exact. The only exception
that we have very briefly talked about is the simplex algorithm. It is a direct non-iterative method for linear
programs.

So, when to use direct versus indirect? If you have a matrix that you can fit easily in memory, then you
should always use direct methods. In such circumstances, there is no point using indirect methods. One
should start considering indirect methods when you have a large enough matrix and just get it into memory
is a issue.

19-6 Lecture 19: November 5

19.5.1 Jacobi and Gauss-Seidl

Given A ∈ Sn++, Jacobi iterations and Gauss-Seidl iterations are the two most basic iterative approaches for
solving linear system Ax = b. In the next lecture (coordinate descent), we will find out that Jacobi and
Gauss-Seidl are exactly the coordinate descent methods for solving the following quadratic minimization
problem:

min
x

1

2
xTAx− bTx

Why? As A ∈ Sn++, note that the function

φ(x) =
1

2
xTAx− bTx (19.1)

is convex, and its minimizer satisfies 0 = ∇φ(x) = Ax − b. Therefore, minimizing φ above is equivalent to
solving Ax = b.

• Jacobi iterations. In this method, we initialize x0 ∈ Rn, and repeat for k = 1, 2, 3, . . .

x
(k)
i =

bi −∑
j 6=i

Aijx
(k−1)
j

 /Aii, i = 1, . . . , n (19.2)

• Gauss-Seidl iterations. In this method, we initialize x0 ∈ Rn, and repeat for k = 1, 2, 3, . . .

x
(k)
i =

bi −∑
j<i

Aijx
(k)
j −

∑
j>i

Aijx
(k−1)
j

 /Aii, i = 1, . . . , n (19.3)

Whether using only the most recent iterates is only difference, but it is a huge difference. Actually it
makes all the difference because Jacobi iterations generically do not converge; it can only converge over nice
situations. On the contrary, Gauss-Seidl iterations always converge. And that is kind of bad news for parallel
computation: Gauss-Seidl cannot be parallel, meanwhile Jacobi can.

19.5.2 Gradient descent

How about gradient descent? So let’s apply it to this problem: initialize x(0), repeat:

x(k) = x(k−1) + tkr
(k−1) , where r(k−1) = b−Ax(k−1) (19.4)

for k = 1, 2, 3, Here r(k−1) is the negative gradient.

What step sizes to use? In fact, this is an interesting case where we can do exact step size optimization.
We can actually plug in the negative gradient r, and try to find a t which can minimize the φ(x + tr). In
the previous lectures, we emphasized that exact step size optimization was never a good idea unless we had
quadratics. Now we are in this special case.

Here we omit the superscripts of (k − 1) for brevity, then the best step size should be given by

tk = arg min
t≤0

φ(x+ tr) =
rT r

rTAr
(19.5)

Lecture 19: November 5 19-7

Figure 19.2: When A is in poor condition, gradient descent will spend a lot of time traversing back and forth
“across the valley”, rather than “down the valley”.

Convergence Analysis. Well, what can we say about it? As the quadratic objective φ is strongly convex,
gradient descent should enjoy linear convergence. It should converge quickly like O(log(1/ε)).

For this specific problem (solving linear system with gradient descent), we can say much more precise result
in terms of the contraction factor.

From one iteration to the next one, if we take a look at the A-norm distance x(k) and the solution x, it is
the decrease from the previous iteration by the amount of

√
1− κ(A)−1. We can see that the poorer the

condition of A, the slower the convergence is.

Formally, we we have the following theorem.

Theorem 19.1 Gradient descent with exact step sizes satisfies

‖x(k) − x‖A ≤
√

1− κ(A)−1‖x(k−1) − x‖A (19.6)

where ‖x‖2A = xTAx and κ(A) = λ1(A)/λn(A) is the condition number of A.

Proof: The proof is similar to what we did on strong convexity analysis, which was our previous homework.
This proof is actually much easier; it is just direct calculation.

And an important note is that the contraction factor here depends adversely on κ(A). To get ‖x(k)−x‖A ≤
ε‖x(0)) − x‖A, we require O(κ(A) log(1/ε)) iterations.

19.5.3 Conjugate gradient

So what is the problem of gradient descent? When κ(A) is large, the contour of this function φ are elongated
ellipsoids. Roughly put, gradient descent will spend a lot of time traversing back and forth “across the
valley”, rather than “down the valley”, as is illustrated in Fig.19.2. In other words, there is not enough
diversity in the descent directions r(k−1) = b−Ax(k−1).

Conjugate gradient is an extremely clever idea. The purpose of it is to do something like gradient descent,
but use a difference direction p that is constructed to be diverse. That is, to repeat iteration like this one:

x(k) = x(k−1) + tkp
(k−1) (19.7)

19-8 Lecture 19: November 5

and pk ∈ span
{
Ap(1), . . . , Ap(k−1)

}⊥
. That is, we expect the new direction to be orthogonal to the past

directions after they multiplied by the matrix A. Each pair of p’s satisfy A-conjugate with each other. We
say p, q are A-conjugate provided pTAq = 0. This explains the name “conjuage gradient”.

Intuition. When we fix the direction p, we are going to do step size optimization. The optimal step size is
given by,

tk = arg min
t≤0

φ(x+ tp) =
pT r

pTAp
(19.8)

Then we plug tk and p into the obejective function φ itself, and get

φ(x(k)) = φ(x(k−1))− 1

2

(p(k))T r(k−1)

(p(k))TAp(k)
(19.9)

Now we can observe two conflicting goals in conjugate gradient. First, we require A-conjugacy among the
directions p’s. We want to avoid the bad behaviour of gradient descent when the condition of A is poor
by imposing diversity. Another kind of conflicting goal is to achieve sufficient alignment between p(k) and
r(k−1). Note that r(k−1) is exactly the direction in gradient descent. If they are not sufficently aligned, their
dot product will be small, and the objective function will be decreased only very little.

Turns out these two considerations are simultaneously met with the following iteration rule, which turns out
to be very simple

p(k) = r(k−1) + βkp
(k−1), where βk = − (p(k−1))T r(k−1)

(p(k−1))TAp(k−1)
(19.10)

where r(k−1) is the previous residual and p(k−1) is the previous direction.

Convergence analysis. So what is the convergence analysis for conjugate gradient?

Theorem 19.2 Conjugate gradient method satisfies

‖x(k) − x‖A ≤ 2

(√
κ(A)− 1√
κ(A) + 1

)k
‖x‖A (19.11)

where as before‖x‖2A = xTAx and κ(A) = λ1(A)/λn(A) is the condition number of A. Further, it finds the
exact solution x in at most n iterations.

Proof: It is much much harder than gradient descent. Actually it is a classic topic. Just in recent years people
have found different and new proofs which invokes Chebyshev polynomials and leads to other interesting
algorithms.

We see that conjugate gradient too enjoys linear convergence but with a contraction factor that has a better
dependence on κ(A). To get ‖x(k) − x‖A ≤ ε‖x(0)) − x‖A, we require O(

√
κ(A) log(1/ε)) iterations. For

poorly conditioned A, the difference between O(κ(A)) and O(
√
κ(A)) can be a big deal.

19.5.4 Example

Here we conduct comparison of iterative methods for least squares problems: 100 i.i.d. standard Gaussian
random instances with n = 100, p = 20. It is not a poorly conditioned system by the way.

Lecture 19: November 5 19-9

Figure 19.3: comparison of iterative methods for least squares problems: 100 i.i.d. standard Gaussian
random instances with n = 100, p = 20.

Here it is fair to compare the methods w.r.t. their number of iterations because for arbitray one among
them, each iteration costs O(np). For Jacobi or Gauss-Seidl, we mean each full pass of the dimensions is an
iteration.

As is shown in the Fig.19.3, Jacabi (black) is not converging. Gradient descent (green) can converge.
Conjugate gradient (purple) and Gauss-Seidl share similar behavior. They both converge much faster than
gradient descent even though it is not a poorly conditioned case. It looks that conjugate gradient does a
little bit better job. However, we should note that, as a kind of coordinate descent, Gauss-Seidl can actually
be applied to a wide range of problems, while conjugate gradient is limited to solving linear system.

19.6 Some advanced topics

There are many more interesting things to learn:

• Updating/downdating matrix factorizations

• Sparse matrix factorizations (SuiteSparse)

• Successive over-relaxation and acceleration

• Preconditioned conjugate gradient

• Laplacian (SDD) linear systems

• · · ·

