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2.1 Recap: Convexity and Why

Definition 2.1. A convex optimization problem is of the form:

min
x∈D

f(x) (2.1)

Subject to:
gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , r
(2.2)

Where f and {gi}mi=1 are all convex and {hj}rj=1 are affine. Convex optimization has special property that
any local minimizer is a global minimizer.

2.2 Convex Sets

Definition 2.2. A set C ⊆ Rn is a convex set if for any x, y ∈ C, we have tx+(1− t)y ∈ C for all t ∈ [0, 1].

Another way to put in slide is that ”line segment joining any two elements lies entirely in set”

Definition 2.3. Convex combination of x1, . . . , xk ∈ Rn is any linear combination of the form

θ1x1 + . . .+ θkxk with θi ≥ 0 and

k∑
i=1

θ1 = 1.

Definition 2.4. For a set of C ⊆ Rn, the convex hull conv(C) is the smallest convex set that contains those
vectors.

Notice that a convex hull is always convex.

2.2.1 Convex Set Examples

2.2.1.1 Some simple ones

• Empty set, point, line.
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• Norm ball: {x : ‖x‖ ≤ r}, for given norm ‖ · ‖, radius r.

• Hyperplane: {x : aTx = b} for given a, b.

• Half space: {x : aTx ≤ b}.

• Affine space:{x : Ax = b} for given matrix A and vector b.

• Polyhedron: {x : Ax ≤ b} (≤ is interpreted component-wise). The set {x : Ax ≤ b, Cx = d} is also
polyhedron.

• Simplex conv(C) for a set C ⊆ Rn of affinely independent points.

2.2.2 Cones and convexity

Definition 2.5. A set C ⊆ Rn is a cone if for any x ∈ C we have tx ∈ C for all t ≥ 0.

Definition 2.6. A set C ⊆ Rn is a convex cone if for any x1, x2 ∈ C we have t1x1 + t2x2 ∈ C for all
t1, t2 ≥ 0.

Definition 2.7. Conic combination of x1, . . . , xk ∈ Rn is any linear combination of the form

θ1x1 + . . .+ θkxk with θi ≥ 0.

Definition 2.8. For a set of vectors x1, . . . , xk ∈ Rn, the conic hull is the smallest set that contains all
conic combinations of x1, . . . , xk.

2.2.3 Examples of convex cones

• Norm cone: {(x, t) : ‖x‖ ≤ t} for any norm. The cone is called second-order cone when the norm is
the `2 norm.

• Normal cone: for any set C ⊆ Rn and any x ∈ C define Nc(x) = {g : gTx ≥ gT y, for all y ∈ C}.
This is always a convex cone.

• Positive Semi-definite cone: Sn+ = {X ∈ Sn : X � 0}. Here we use X � to denote X is a positive
semidefinite matrix.

2.2.4 Key properties of convex sets

• Separating hyperplane theorem: two disjoint convex sets have a separating hyperplane between them.
Formally, if C,D are nonempty convex sets with C ∩D = ∅, then there exists a, b such that C ⊆ {x :
ATx ≤ b} and D ⊆ {x : ATx ≤ b}.
If two sets do not intersect, is there always a hyperplane that strictly separates them? Consider the
set {(x, y) : y ≤ 0}, and also the epigraph {(x, y) : y ≥ bx, x ≥ 0}. The second set will get infinitely
close to the first, so you cannot put a hyperplane bewteen them. This means you cannot expect that
disjoint sets will be strictly separated.

• Supporting hyperplane theorem: a boundary point of a convex set has a supporting hyperplane passing
through it. Formally, if C is a nonempty convex set, and x0 ∈ bd(C), there exists a such that
C ⊆ {x : aTx ≤ aTx0}.



Lecture 2: August 29, 2018 2-3

2.2.5 Operations preserving convexity

• Intersection

• Scaling and translation

• Affine images and preimages. For any given affine function of the form f(x) = Ax + b and C is a
convex set, then f(C) = {f(x) : x ∈ C} is convex. Also, if D is convex, then the inverse (or pre-image)
f−1(D) = {x : f(x) ∈ D} is convex.

2.2.6 Example: Linear matrix inequality solution set

Given A1, . . . , Ak, B ∈ Sn, a linear matrix inequality for a variable x ∈ Rk looks like

x1A1 + . . .+ xkAk � B. (2.3)

Let’s prove that the set C of points x that satisfy the above inequality is convex.

First approach: check that if two points lie in the set, then all in-between points lie in the set. We can check

this by seeing that this is true for any v: vT
(
B −

∑k
i=1(txi + (1− t)i)Ai

)
v ≥ 0.

Second approach: define Sn+ = {Y, Y � 0} which is convex, and define f(x) = B −
∑
xiAi, then

f−1(SN+ ) = {x : f(x) ∈ SN
+ } = {x : B −

∑
xiAi � 0}, (2.4)

which is exactly our set.

2.2.7 More operations preserving convexity

• Perspective images and preimages. (There is a relationship here to pinhole cameras!)

• Linear-fractional images and preimages: The perspective map composed with an affine function, like
f(x) = (Ax+ b)/(cTx+ d), called a linear-fractional function, preserves convexity! So if C ⊆ dom(f)
is contex, then so is f(C), and if D is convex then so is f−1(D).

2.3 Convex functions

Definition 2.9. A function f : Rn → R is convex if dom(f) ⊂ Rn is convex, and

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) for ≤ t ≤ 1 and x, y ∈ dom(f).

In other words, the function always lies below the line segment joining f(x) and f(y). Concave functions
have the opposite inequality, and f being concave implies −f is convex.

Important modifiers:

• Strictly convex: same definition but with strict inequalities, and the function is strictly below the line
segments. The way I think about this is: f has more curvature than a linear function. Linear functions
are convex but not strictly convex.

• Strongly convex with parameter m > 0: this says that if you subtract a quadratic, it’s still convex:
f −m/2 ‖x‖2 is convex. In other words, f is more convex/curved than a quadratic function.

Note that strong convexity implies strict convexity, which implies convexity. All of this is analogous for
concave functions!
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2.3.1 Examples of convex functions

• Univariate functions (eax for any a ∈ R, xa for a ≥ 1, xa for a ≤ 0 when x ∈ R+; xa is concave for
0 ≤ a ≤ 1 for x ∈ R+, log x is concave over R++.

• affine functions aTx+ b are both convex and concave

• quadratic functions 1
2x

TQx+ bTx+ c are convex provided that Q � 0 (i.e., Q is positive semidefinite).

• least squares, like ‖y −Ax‖2, because if you expand it, it looks like a quadratic function with Q = ATA,
and ATA is always positive semidefinite (since bTATAb ≥ 0 since zT z =

∑
z2i where z = Ab).

• Norms – all of them are convex! (Three things define a norm; briefly, these are: ‖x‖ ≥ 0, ‖αx‖ =
|α| ‖x‖, and ‖x + y‖ ≤ ‖x‖+ ‖y‖. These also provide convexity.)

The most common `p norms are 1, 2,∞. The `1 norm is good for inducing sparsity, `2 is ubiquitous
because we use it to measure distances, and `∞ is useful for reasons we’ll see later. (Note that the `0
“norm” does not satisfy the triangle inequality, so it is not a norm, not convex, and not our friend.)
Operator (also called spectral) and trace (also called nuclear) norms are also convex.

• Indicator functions. If C is convex, then the indicator function IC(x), defined as 0 inside the set and
∞ outside, is also convex.

Let’s check this. We have f(x) = IC(x). We need to first check the domain: dom(f) = C is convex
by assumption; good. Now, for any convex combination of x, y ∈ dom(f), we need f(tx+ (1− t)y) ≤
tf(x)+(1− t)f(y). On the right hand side, f(x) and f(y) are zero (since x, y are in the domain), so we
have tf(x) + (1− t)f(y)) ≤ t0 + (1− t)0 = 0. On the left hand side, we know the term (tx+ (1− t)y)
lies inside the set (since the domain C is convex), and the indicator function gives 0 for all values in
the set, so we have 0 = 0 and we are done.

2.3.2 Key properties of convex functions

• Epigraph characterization: a function f is convex ⇐⇒ its epigraph (which is the set of all points
above the function) is a convex set. In other words, f is convex if its epigraph epi(f) = {(x, t) ∈
dom(f)× R : f(x) ≤ t} is also convex.

• Convex sublevel sets: if f is convex, then its sublevel sets, defined by {x ∈ dom(f) : f(x) ≤ t}, are
convex, for all t ∈ R. The converse is not true!

• First-order characterization: if f is differentiable, then f is convex ⇐⇒ dom(f) is convex and
f(y) ≥ f(x) + ∇f(x)T (y − x) for all x, y ∈ dom(f). This means that in a differentiable convex
function, ∇f(x) = 0 =⇒ x minimizes f .

• Second-order characterization: if f is twice differentiable, then f is convex ⇐⇒ dom(f) is convex,
and ∇2f(x) � 0 for all x ∈ dom(f).

You might wonder about that inequality. Consider f(x) = x4, which is quadratic, with second deriva-
tive zero at zero. So, it’s strictly convex, but the second derivative is not strictly positive.

• Jensen’s inequality: if f is convex, and X is a random variable on dom(f), then f(E[X]) ≤ E[f(x)].

• Log-sum-exp function: g(x) = log
(∑k

i=1 e
aT
i x+bi

)
for fixed ai, bi. This is often called the soft max,

since it smoothly approximates maxi=1,...,k(aTi x+ bi).
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2.3.3 Operations preserving convexity

• Nonnegative linear combination: f1, . . . , fm being convex implies a1f1 + . . .+ amfm is also convex, for
any ai ≥ 0.

• Pointwise maximization: if fs for s ∈ S are all convex, then the pointwise max of them is also convex.
Note that the functions can be discrete or continuous, and the set S can even be infinite!

• Partial minimization: if g(x, y) is convex in x, y, and C is convex, then f(x) = miny∈Cg(x, y) is convex.

2.3.4 Example: distances to a set

Consider the max (or min) distance to a set, under an arbitrary norm, written f(x) = maxy∈C ‖x− y‖, is
convex (whether C is convex or not). This is because the norm is convex, and the pointwise max is also
convex. As for the min distance to the set, it is convex as long as the set C is convex.

2.4 Contributions

• Yingjing Lu: Section 1.1 to 1.2.3

• Adam Harley: Section 1.2.4 to the end.

• Ruosong Wang: Revisions.


