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20.1 Background of Coordinate Descent

We have studied a lot of sophisticated methods to solve the convex minimization problem, e.g. gradient
descent, proximal gradient descent, stochastic gradient descent, Newton’s method, Quasi-Newton method,
Proximal Newton method, Barrier method, and primal-dual interior point method. These methods are
updating the variables from all coordinates at the same time. But these coordinates may not be equally
important. It is possible one coordinate influences the criterion value more than other coordinates do. So
what if now we can focus on minimizing the criterion according to each coordinate separately? We might be
interested in first answering the following questions.

@: Given convex, differentiable function f : R® — R, if we are at a point = such that f(z) is minimized
along each coordinate axis, then have we found a global minimizer? That is, does f(z + de;) > f(z) for all
d, i = f(x) = min, f(2)? Note that e; = (0,..,1,...,0) € R™, the ith standard basis vector.

A: Yes! Proof:
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0=Vf(z)=(5=-(z) (x)) (20.1)

@: Same question, but now for f convex, and not differentiable?

A: No. Check the counter example in Figure 20.1. If we are now at the intersection of two red lines where
the function f is not differentiable, no matter how we move along each axis, we always get larger criterion
value. But this is not a global minimum.

@: Same question again, but now f(z) = g(z) + h(z) = g(z) + Y i, hi(x;), with g convex, differentiable
and each h; convex? (Here the non-smooth part is called separable)

A: Yes! Proof:

Here we want to prove that

vy e R, f(y) — f(z) 20 (20.2)
We know that
fla+de;) = g(x + de;) + Y hj(;) + hali + ) (20.3)
J#i
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Figure 20.1: A counter example

Since z is optimal along ith axis, according to subgradient optimality, we have

0 € Vig(x) + Oh;(x;) (20.4)
> —Vig(z) € Ohi(z;)

< hi(yi) > hi(x;) — Vig(x)(yi — x4)

= Vig(z)(yi — x;) + hi(yi) — hi(z;) >0

Since f is convex, according to the first-order characterization, we have:

fly) — f(z) (20.5)

20.2 Coordinate Descent

For the problem
min f(x) (20.6)
xz

where f(z) = g(x) + >, hi(x;), with g convex and differentiable and h; convex, we can use coordinate
descent:
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Let (9 € R™, and for k = 1,2, ... repeat

xgk) = argmingmf(:v(lk)7 ...,x&)l,xi,xz(-if), ey xslk_l)), 1=1,2,...,n

Note that we always use the most recent information possible. Tseng [4] proves that for such f (provided
f is continuous on compact set x : f(x) < f(z(?)) and f attains its minimum), any limit point of x(¥),
k=1,2,3,... is a minimizer of f.

Here are some useful and important notes for coordinate descent:

1. Order of cycle through coordinates is arbitrary, can use any permutation of {1,2,...,n}

2. Can everywhere replace individual coordinates with blocks of coordinates. For example, we can always
update a group of coordinates at the same time.

3. ”One-at-a-time” update scheme is critical, and ”all-at-once” scheme does not necessarily converge.

4. The analogy for solving linear systems: Gauss-Seidel versus Jacobi method.

20.3 Examples of Coordinate Descent

20.3.1 Linear Regression

For the classical linear regression, we consider
1
min - ly — X3 (20.7

where y € R, and X € R"*P. Take the (sub)gradient of the objective with respect to 3; (the ith element
of B) where all other j # i are fixed and set it to zero to get the update step:

Xy - X_iB
XT(XB—y) = X[ Xifi + X[ (X_ifi —y) =0 == B = (yXTX‘ B-)

(20.8)

where X_; and _; are original matrix or vector with i-th column or element removed respectively. Repeat
this update for i = 1,2,...,p,1,2,.... This is the same as Guass-Seidl updates.

Remark. The computational cost (in terms of flops) for 1 cycle of coordinate descent is O(np), where O(n)
to compute X7 (y— X_;3_;) for each update in a cycle. This is the same as the cost of 1 iteration of gradient
descent.

20.3.2 LASSO Regression
For the classical LASSO, we consider
.1
min §Hy*Xﬂ||§+>\H5||1 (20.9)

where y € R”, and X € R"*P. Notice that we can use coordinate descent as the regularizer term can
be decomposed as the sum of convex functions, namely ||8]1 = > 5_, [8i]. Take the (sub)gradient of the
objective with respect to 3; where all other j # i are fixed and set it to zero to get the update step:

X (y— X _if
X XiBi+ X[ (XiBoi —y) + Asi =0 <= Bi < Sy 1x,2 < ( XTX; ))

(20.10)
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where s; € 0|8;| and Sy is a soft-thresholding operator,

Bi—A Bi>A
[Sx(B)]i =<0 A< B <.
Bit A Bi <—=A
Repeat this update for i = 1,2,...,p,1,2, ....
20.3.3 Box-constrained QP
A box-constrained QP has the form:
1
min §xTQx Ny subject tol <z < u (20.11)
x

for b € R", @ € S". Notice that we can use coordinate descent as the constraint can be decomposed into
element-wise convex constraints: I(l < z < u) = Z?:l I(l; < x; < w;), I being the indicator function.
Similar steps for taking the (sub)gradient of the objective with respect to x; with all other elements j # i
fixed gives the update step:

bi = 2254 Qijx;
Ti T[li,’u.i] < ZH& d ]) (2012)
Qii
where Ty, ,,,] is the projection operator on to the interval [I;, u;] that clips the value:
U; 2 > U
L, z<l
Repeat this update for i =1,2,...,n,1,2,....
20.3.4 Support Vector Machines
Consider the SVM dual objective:
1 e~
min iaTXXTa — 17 subject to 0 < C1,aTy =0 (20.13)

[3] introduces Sequential Minimal Optimization (SMO), a blockwise coordinate descent method that uses
greedy heuristics to select the next block of 2 instead of simple cycling. SMO repeats the following updates:

1. Greedily choose a block of ¢ and j such that «;, «; violate the complementary slackness condition.
That is, select two #’s (according to some heuristic) such that

ai(1—& — (XB); — yiBo) #0
(C—0;)& #0

where (3, 8o, £ are primal variables.

2. Minimize the objective over the two chosen variables while keeping others fixed.

For a more recent work on coordinate descent method for SVMs, refer to [2].
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20.4 History of Coordinate descent

Until Friedman et. al 2007[1], coordinate descent was considered to be an interesting, toy method. This
could be because people were implementing the Jacobian version of it without distinguishing between one
at a time versus all at once type of updates.

20.4.1 Why is Coordinate descent used today?

Coordinate descent is very simple and easy to implement. It can achieve state-of-the-art if implemented using
some tricks described in the next section. This is especially true for functions in consisting of a quadratic
function and a separable component either directly or under proximal Newton. Examples: lasso regression,
lasso GLMs (under proximal Newton), SVMs, group lasso, graphical lasso (applied to the dual), etc.

20.5 Implementation tricks - Pathwise Gradient Descent

Pathwise coordinate descent for lasso has the following structure-
Outer Loop(pathwise strategy) : The idea is to go from a sparse to dense solution.

e Compute the solution over a sequence A\; > Ay > ... > A, of tuning parameter values

e For tuning parameter value A, initialize coordinate descent algorithm at the computed solution for
Ak+1 (warm start)

Inner Loop(active set strategy) : This step is efficient since we only work with the active set.

e Perform one coordinate cycle (or small number of cycles), and record active set A of coefficients that
are Nonzero

e Cycle over only the coefficients in A until convergence

e Check KKT conditions over all coefficients; if not all satisfied, add offending coefficients to A, go back
one step

Pathwise coordinate descent combined with screening rules make practical coordinate descent very efficient.

20.6 Coordinate gradient descent

For a smooth function f, the iterations

xgk) = :cl(kal) — tki.Vif(:Egk), ...,xgﬁ)l,xgk),xgi)l, ...,x;k)) i1=1..n (20.14)
for k =1, 2,3, . . . are called coordinate gradient descent, and when f = g + h, with g smooth and

h=3""_| hi, the iterations

% 7

g;gk) = PTrOTh, t;; <aj(kl) — tk,-.Vig(xgk), ceey xl@l, .I‘<k), xgi)l, ceey I,Slk))> s 1=1..n (2015)
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for k =1, 2,3,. . . are called coordinate proximal gradient descent. When g is quadratic, (proximal)
coordinate gradient descent is the same as coordinate descent under proper step size.

Roughly speaking, theory suggests that the convergence results for coordinate descent are similar to those
for proximal gradient descent.
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