
10-725/36-725: Convex Optimization Fall 2018

Lecture 21: November 12
Lecturer: Ryan Tibshirani Scribes: Maria Jahja, Yuting Shi, Yu Chen

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

21.1 Last time: Coordinate Descent

Consider function
min
x
f(x)

where f(x) = g(x) +
∑n

i=1 hi(xi), with g convex and differentiable and each hi is convex.

Algorithm 1 Coordinate Descent Algorithm

1: Initialize with guess x = [x1, x2, ..., xn]T

2: repeat
3: for all j in 1, 2, ..., n do
4: xj ← argminxj

f(x)
5: end for
6: until convergence

21.1.1 Conjugate functions and their properties

f∗(x) = max
y

yTx− f(y) (21.1)

This definition can be interpreted as the maximum gap between linear function yT and f(y). Obviously, this
is equivalent to,

−f∗(x) = min
y
f(y)− yTx (21.2)

Fenchel’s inequality,
f∗∗(x) + f(y) ≥ xT y (21.3)

If f is convex and closed, then
f∗∗ = f (21.4)

In general, we have
f∗∗ ≤ f (21.5)

x ∈ ∂f∗(y) ⇐⇒ y ∈ ∂f(x) ⇐⇒ x ∈ argmin
z

f(z)− zT y (21.6)

21-1



21-2 Lecture 21: November 12

If f is strictly convex,
∇f∗(y) ∈ argmin

z
f(z)− zT y (21.7)

21.1.2 Dual descent

The purpose of using dual descent is that we can optimize the dual problem without calculate the dual
function’s gradient directly. We start with convex optimization problem with affine constraints.

min
x

f(x) (21.8)

subject to Ax = b (21.9)

By the Lagrangian is,
L(x, u) = f(x) + uT (Ax− b) = f(x)− (ATu)Tx− uT b (21.10)

The dual function is,

g(u) = min
x

L(x, u) (21.11)

= min
x

f(x) + uT (Ax− b) (21.12)

= min
x
f(x)− (−ATu)Tx− uT b (21.13)

= −f∗(−ATu)− uT b (21.14)

So in order to maximize the dual objective function,

∂g(u) = A∂f∗(−ATu)− b (21.15)

:= Ax− b (21.16)

where x = ∂f∗(−ATu). Therefore, from the basic properties of the conjugate function we know,

x ∈ argmin
z

f(z) + zTATu (21.17)

The dual ascent algorithm is given below, Note that the u is updated by adding the subgradient, since this

Algorithm 2 Dual Ascent Algorithm.

1: repeat for k
2: x(k) ∈ argminz f(z) + zTATu(k−1)

3: u(k) = u(k−1) + tk(Ax(k) − b).

is for the ascent update.

Theorem 21.1 Assume f is a closed and convex function.
Then f is strongly convex with m ⇐⇒ f∗ is strongly convex with parameter 1

m

Proof: Proof of “=⇒”
If x is the minimizer,

g(y) ≥ g(x) +
m

2
‖y − x‖2 (21.18)

Define gu(x) = f(x)− uTx, by using the properties of conjugate function in section 21.1, we define

xu = argmin
x

gu(x) = ∇f∗(u)



Lecture 21: November 12 21-3

xv = argmin
x

gv(x) = ∇f∗(v)

So by using the inequality of the minimizer, we have

gu(xv) ≥ gu(xu) +
m

2
‖xv − xu‖2 (21.19)

⇐⇒ f(xv)− uTxv ≥ f(xu)− uTxu +
m

2
‖xv − xu‖2 (21.20)

(21.21)

Similarly, we have,

gv(xu) ≥ gv(xv) +
m

2
‖xu − xv‖2 (21.22)

⇐⇒ f(xu)− vTxu ≥ f(xv)− vTxv +
m

2
‖xu − xv‖2 (21.23)

(21.24)

By adding these two inequalities together, we have,

f(xv)− uTxv + f(xu)− vTxu ≥ f(xu)− uTxu + f(xv)− vTxv +m‖xu − xv‖2 (21.25)

⇐⇒ (u− v)T (xu − xv) ≥ m‖xu − xv‖22 (21.26)

=⇒‖xu − xv‖2 · ‖u− v‖2 ≥ (u− v)T (xu − xv) By Cauchy-Schwartz (21.27)

≥ m‖xu − xv‖22 (21.28)

=⇒‖xu − xv‖2 ≤
1

m
‖u− v‖2 (21.29)

Proof of “⇐= ”
Assume f∗ has Lipschitz property, with constant L = 1

m . Define the follow about gx(z)

gx(z) = f∗(z)−∇f∗(x)T z

∇gx(z) = ∇f∗(z)−∇f∗(x)

∇2gx(z) = ∇2f∗(z)

so by using the Taylor expansion we can derive the following inequality,

gx(z) ≤ gx(y) +∇gx(y)T (z − y) +
L

2

∥∥z − y∥∥2
2

(21.30)

(21.31)

Now we minimize the right hand side over z, then we have the minimizer of the quadratic equation with

z∗ = −∇gx(y)

L
+ y = −∇f

∗(y)−∇f∗(x)

L
+ y

Take this back to the inequality we have,

gx(−∇gx(y)

L
+ y) ≤ gx(y)−∇gx(y)T

∇gx(y)

L
+
L

2

∥∥∥∥− ∇gx(y)

L

∥∥∥∥2
2

(21.32)

=⇒ 1

2L

∥∥∥∥∇f∗(y)−∇f∗(x)

∥∥∥∥2
2

≤ f∗(y)− f∗(x) +∇f∗(x)T (x− y) (21.33)



21-4 Lecture 21: November 12

Similarly we also have,

1

2L

∥∥∥∥∇f∗(x)−∇f∗(y)

∥∥∥∥2
2

≤ f∗(x)− f∗(y) +∇f∗(y)T (y − x) (21.34)

Finally we get,

1

L

∥∥∥∥∇f∗(x)−∇f∗(y)

∥∥∥∥2
2

≤ ∇(f∗(y)− f∗(x))T (y − x) (21.35)

Let u = ∇f(x), v = ∇f(y), then we have x ∈ ∂f∗(u), y ∈ ∂f∗(v) so,

1

L
‖v − u‖22 ≤ ∇(∇f(y)−∇f(x))T (y − x) ≤ ‖∇f(y)−∇f(x)‖2‖y − x‖2 (21.36)

=⇒‖∇f(y)−∇f(x)‖2 ≤ ‖y − x‖2 (21.37)

21.2 Dual Decomposition

21.2.1 Dual Decomposition with Equality

Consider

min
x

B∑
i=1

fi(xi) subject to Ax = b (21.38)

where x = (x1, ..., xB) ∈ Rn is divided into B blocks of variables, with each xi ∈ Rni . Similarly, we can
partition A accordingly:

A = [A1, ..., AB ], where Ai ∈ Rm×ni (21.39)

This helps in calculation of sub-gradient where the minimization process decomposes into B separate prob-
lems:

x+ ∈ argmin x

B∑
i=1

fi(xi) + uTAx (21.40)

⇐⇒ x+i ∈ argmin xi
fi(xi) + uTAixi, i = 1, ..., B (21.41)

Algorithm 3 Dual Decomposition Algorithm. Note that the order of update for each coordinate can be
changed.

1: repeat for k
2: 1. Solve the dual sub-problems (in parallel)
3: Find x1 that minimize f1(x1) + (u(k−1))TA1x1
4: Find x2 that minimize f2(x2) + (u(k−1))TA2x2
5: ...
6: Find xB that minimize fB(xB) + (u(k−1))TABxB
7: 2. Update dual variables. (account together)

8: u(k) = u(k−1) + tk(
∑B

i=1Aix
(k)
i − b)

We can think of these steps as:



Lecture 21: November 12 21-5

Figure 21.1: Visualization of the steps

• Broadcast: send u to each of the B processors, each optimizes in parallel to find xi

• Gather: collect Aixi from each processors, update the global dual variable u.

21.2.2 Dual Decomposition with Inequality Constraints

Consider

min
x

B∑
i=1

fi(xi) subject to

B∑
i=1

Aixi ≤ b (21.42)

where the dual decomposition, i.e., projected sub-gradient method is:

x
(k)
i ∈ argmin xi

fi(xi) + (u(k−1))TAixi, i = 1, ..., B (21.43)

where u(k) = (u(k−1) + tk(

B∑
i=1

Aix
(k)
i − b))+ (21.44)

where u+ denotes the positive part of u, i.e., (u+)i = max{0, ui}, i = 1, ...,m

Interpretation:
According to Vandenberghe, we can use price coordination interpretation:

• Have B units in a system, each unit chooses its own decision variable xi (how to allocate its goods).

• Constraints are limits on shared resources (rows of A), each component of dual variable uj is price of
resource j.

• Dual update:

u+j = (uj − tsj)+, j = 1, ...,m (21.45)

where s = b−
∑B

i=1Aixi are slacks

– Increase price uj if resource j is over-utilized, sj < 0

– Decrease price uj if resource j is under-utilized, sj > 0

– Never let prices get negative



21-6 Lecture 21: November 12

21.3 Augmented Lagrangian Method

One disadvantage of dual ascent is that it requires strong conditions to ensure convergence. The augmented
Lagrangian method, also known as the method of multipliers, gains better convergence properties by trans-
forming the primal problem

min
x

f(x) +
ρ

2
‖Ax− b‖22 subject to Ax = b,

where ρ > 0 is a parameter. This is clearly the same problem as the original, and when A has full column
rank, the objective function is strongly convex. We can iterate using dual gradient ascent

x(k) = argmin
x

f(x) + (u(k−1))TAx+
ρ

2
‖Ax− b‖22

u(k) = u(k−1) + ρ(Ax(k) − b).

Note that we have the step size as tk = ρ in the dual algorithm. Due to the stationarity condition in the
original primal problem

0 ∈ ∂f(x(k)) +AT (u(k−1) + ρ(Ax(k) − b))
= ∂f(x(k)) +ATu(k)

we have that, under mild conditions Ax(k)−b→ 0 as k →∞ (primal iterates approach feasibility), the KKT
conditions are satisfied in the limit. Hence, x(k), u(k) converge to solutions.

While we see much better convergence properties with the augmented Lagrangian method, we have lost the
property of decomposability.

21.4 Alternating direction method of multipliers (ADMM)

Alternating direction method of multipliers strives to get the best of both words: retrain better convergence
properties of the augmented Lagragian method and keep decomposability.

ADMM applies to problems of the form

min
x,z

f(x) + g(z) subject to Ax+Bz = c.

We can often manipulate problems to fit this form by introducing auxiliary variables. Just as we did before,
we can augment the objective function

min
x

f(x) + g(z) +
ρ

2
‖Ax+Bz − c‖22

where ρ > 0 is some parameter. With this formulation, we can write the augmented Lagrangian

Lp(x, z, u) = f(x) + g(z) + uT (Ax+Bz − C) +
ρ

2
‖Ax+Bz − c‖22

So far, everything looks the same as the augmented Lagrangian method, with the key difference being the
decomposition of the primal variables into x and z. The augmented Lagrangian method would have jointly
minimized the first two steps by

(x(k), z(k)) = argmin
x,z

Lp(x, z, u(k−1)).



Lecture 21: November 12 21-7

ADMM splits the minimization into two (hence the name “alternating”), and repeat the following steps for
k = 1, 2, 3, . . .

x(k) = argmin
x

Lp(x, z(k−1), u(k−1))

z(k) = argmin
z

Lp(x(k), z, u(k−1))

u(k) = u(k−1) + ρ(Ax(k) +Bz(k) − c).

21.4.1 Convergence guarantees

Without requiring A,B to be full rank, and under modest assumptions on f, g (closed and convex is enough),
ADMM iterates satisfy, for any ρ > 0

• Residual convergence: r(k) = Ax(k) −Bz(k) − x→ 0 as k →∞
This implies that as we continue iterating, primal iterates approach feasibility.

• Objective convergence: f(x(k)) + g(z(k)) → f? + g?, where f? + g? is the optimal objective value for
the primal.

• Dual convergence: u(k) → u?, where u? is a dual solution.

For details, see Boyd et al. (2010), brought attention to ADMM methods. Roughly, ADMM behaves like a
first-order method, but it much more flexible and allows problems to be solved in parallel—even when it is
not obvious from the problem’s structure. Theory on convergence rates are still being worked out: see Hong
and Luo (2012), Deng and Yin (2012), Iutzeler et al. (2014), Nishihara et al. (2015).

21.4.2 Scaled form ADMM

Typically, ADMM is used in scaled form for convenience. Let w = u/ρ. Then the augmented Lagrangian is

Lp(x, z, u) = f(x) + g(z) +
ρ

2
‖Ax+Bz − c+ w‖22 −

ρ

2
‖w‖22

with corresponding ADMM updates

x(k) = argmin
x

f(x) +
ρ

2
‖Ax+Bz(k−1) − c+ w(k−1)‖22

z(k) = argmin
z

g(z) +
ρ

2
‖Ax(k) +Bz − c+ w(k−1)‖22

w(k) = w(k−1) +Bz(k) − c

where the iterate w(k is a running sum of residuals

w(k) = w(0) +

k∑
i=1

(Ax(i) +Bz(i) − c).

21.4.3 Example: alternating projections

Consider the problem of finding a point in the intersection of two convex sets C,D ⊆ Rn, which we write as

min
x

IC(x) + ID(x).



21-8 Lecture 21: November 12

Recall we can reframe this as the maximum distance to each of the two sets, and apply the subgradient
method with a chosen step-size. Alternatively, to get this into ADMM form, we can introduce an auxiliary
variable z so that we express the problem as

min
x,z

IC(x) + ID(z) subject to x− z = 0.

Now each ADMM iteration involves two projections

x(k) = argmin
x

PC(z(k−1) − w(k−1))

z(k) = argmin
z

PD(x(k) − w(k−1))

w(k) = w(k−1) + x(k) − z(k).

It is similar to the classic von Neumann alternating projections algorithm

x(k) = argmin
x

PC(z(k−1))

z(k) = argmin
z

PD(x(k))

but we now have a dual variable, w, which is often called the “offset” variable. In this setting, the ADMM
algorithm converges much quicker than standard alternating projections. To see this, consider one of the
sets, say C, is a linear subspace (D is some generic closed convex set). Then the ADMM updates are

x(k) = argmin
x

PC(z(k−1))

z(k) = argmin
z

PD(x(k) − w(k−1))

w(k) = w(k−1) + x(k) − z(k),

since, due to linearity, w does not matter for the first projection. This is equivalent to Dykstra’s algorithm
(which came after von Neumann’s designed for better convergence properties) when z(0) = y for finding the
closest point in the intersection C ∩D to y.

21.5 Extra discussion: scope

Let’s consider first-order methods, second-order methods, coordinate descent, and ADMM. First-order meth-
ods and second-order methods are heavy machinery we can apply to optimization problems. Interior point
methods can be applied very widely and generically (after some reparameterization), but can be computa-
tionally slower. Interior point methods start being competitive when we know the Hessian has good structure
(e.g. banded, sparse) that we can leverage.

When comparing first-order methods to coordinate descent to ADMM, we see that first-order methods have
similar advantages from generality. Coordinate descent applies to a more specific subgroup of optimization
problems, but can be chosen depending on how quickly the coordinate updates can be computed. ADMM
converges very differently depending on how the decomposition is done, roughly on the order of first-order
methods, slower than coordinate descent. A major strength of ADMM lies in its parallelizable structure,
which will be discussed in the following lecture.

References

[Boyd 10] S. Boyd and N. Parikh and E. Chu and B. Peleato and J. Eckstein, “Distributed optimization
and statistical learning via the alternating direction method of multipliers,” 2010.



Lecture 21: November 12 21-9

[Deng 12] W. Deng and W. Yin, “On the global and linear convergence of the generalized alternating
direction method of multipliers,” 2012.

[Hong 12] M. Hong and Z. Luo, “On the linear convergence of the alternating direction method of multi-
pliers,” 2012.

[Iutz 14] F. Iutzeler and P. Bianchi and Ph. Ciblat and W. Hachem, “Linear convergence rate for
distributed optimization with the alternating direction method of multipliers,” 2014.

[Nish 15] R. Nishihara and L. Lessard and B. Recht and A. Packard and M. Jordan, “A general analysis
of the convergence of ADMM,” 2015.


