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23.1 Recap: ADMM

We use the ADMM method for the problem where the objective is split up as f(x), g(z)

min
x,z

f(x) + g(z) subject to Ax+Bz = c

. If the problem isn’t originally in this form, recall that we can introduce auxiliary variables to get it in this
form. we form augmented Lagrangian (scaled form):

Lρ(x, z, w) = f(x) + g(z) +
ρ

2
‖Ax+Bx− c+ w‖22 −

ρ

2
‖w‖22

if you expand the second term you get
ρ

2
(2wT (Ax + Bz − c) + ‖Ax + Bz − c‖22) (”augmented” lagrangian

form). Alternation Direction methods of multipliers or ADMM has the following update step:

x(k) = arg min
x

Lρ(x, z
(k−1), w(k−1))

z(k) = arg min
z

Lρ(x
(k), z, w(k−1))

w(k) = w(k−1) +Ax(k) +Bz(k) − c

We saw that ADMM converges like a first-order method and has a very flexible framework. It can be applied
to simple problems like LASSO along with more difficult problems like SDPs which cannot be solved easily
using interior point methods.

23.2 Projected Gradient Descent

The motivation for Frank-Wolfe is projected gradient descent. Projected gradient descent is a special case
of proximal gradient descent. Consider a constrained optimization problem, where the set the solution is
constrained to belong to is defined as C,

min
x
f(x) subject to x ∈ C

23-1
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where f is convex and smooth, and C is convex. Recall projected gradient descent uses an initial x(0), and
then updates for k = 1, 2, 3, · · · by first performing gradient descent on the then current solution and then
projecting it back onto the constraint set. This can be expressed as

x(k) = Pc(x
(k−1) − tk∇f(x(k−1))

where Pc is the projection operator onto the set C. Special case of proximal gradient, motivated by local
quadratic expansion of f :

x(k) = Pc

(
arg min

y
∇f(x(k−1))T (y − x(k−1)) +

1

2t
‖y − x(k−1)‖22

)
For this method we need to know the projection operator. The projection operator for a given constraint
may or may not be known beforehand, it could be computationally too. In such a setup, moving from one
constraint to another can change the difficulty of (projection operator) solution drastically. For ex, if your
constraint set is a polyhedron, C = {x : Ax ≤ b}, then projection onto it is generally very hard. There are
special cases, such as if the polyhedra is a simplex C = {1Tx, x ≥ 0}, then the projection can be computed
in linear time.

23.3 Frank-Wolfe Method

The Frank-Wolfe method is an alternative to Projected Gradient Descent which doesn’t involve projections.
The Frank-Wolfe method is also known as conditional gradient method. Instead of using a quadratic ex-
pansion as shown above for the projected GD method, it uses a local linear expansion of f . Note that if
you were to apply projected GD to a linear approximation of f , the minimum will be at −∞ unless you are
already at the solution (∇f = 0). In the Frank-Wolfe method they minimize the linear approximation over
the constraint set, instead of projecting afterwards separately. Let s represent y, then

s(k−1) ∈ arg min
s∈C

∇f(x(k−1))T s

x(k) = (1− γk)x(k−1) + γs(k−1)

This implies that we don’t move fully in the direction of the projection, we take a convex combination of
the new point s(k−1) and x(k−1) There is no projection involved, this method is solved directly over the
constraint set C.
The default choice of step sizes is γk = 2/(k + 1), k = 1, 2, 3, · · · . This choice has been made to facilitate
the convergence proof and to derive the convergence rate. Note for any 0 ≤ γk ≤ 1, we have x(k) ∈ C by
convexity. So we can rewrite the update as

x(k) = x(k−1) + γk(s(k−1) − x(k−1)).

Here, (s(k−1) − x(k−1)) represents the direction we are traveling in. This update states that we are moving
less and less in the direction of the linearization minimizer as the algorithm proceeds (since γk is decreasing
as 1/k..

23.4 Norm Constraints

Now, we look at how the Frank-Wolfe method deals with optimization problems where the constraint is on
the norm of the solution, ie, what happens when C = {x : ‖x‖ ≤ t} for a norm ‖ · ‖. By definition of the
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Figure 23.1: (from Jaggi 2011) f(x) is a differentiable convex function, D is the constraint set. The brown
plane is a linear approximation of the function at x. s is the point that minimizes the linear approximation
over the constraint set D. Instead of moving to the point s, the update is a convex combination of x, s.

problem, we have

s ∈ arg min
‖x‖≤t

∇f(x(k−1))T s

We see that,

min
‖s‖≤t

∇f(x)T s = − max
‖s‖≤t

−∇f(x)T s

= −t · max
‖z‖≤1

−∇f(x)T z

= −t · max
‖z‖≤1

∇f(x)T z.

Therefore, arg min‖s‖≤t∇f(x)T s = −t arg max‖s‖≤1∇f(x)T s which is equal to the subdifferential of the dual
norm. The dual norm is written as

‖z‖∗ = max
‖z‖≤1

zTx

Hence, following the rule of the subgradients of the max function, we have,

s = −t ·
(

arg max
‖s‖≤t

∇f(x(k−1))T s
)

= −t · δ‖∇f(x(k−1))‖∗

where ‖ · ‖∗ denotes the corresponding dual norm. That is, if we know how to compute the subgradients of
the dual norm, then we can easily perform the Frank-Wolfe steps. Since we have a closed form update now,
this can often be much cheaper or simpler than projection onto C = {x : ‖x‖ ≤ t}. We, now, look at some
examples of norm based constraints and how to derive the Frank-Wolfe method in these special cases.

23.4.1 `1 Regularization

We look at the updates for some special cases of norm constraints and compare it to the projection gradient
descent method for these cases. If we were to solve the constrained form of LASSO or logistic LASSO, we’d
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have a `1 ball as the constraint set C. To use the Frank-Wolfe method we’d need to know what the dual
norm is and what its subgradient looks like, for the `1 norm.

min
x
f(x) subject to ‖x‖1 ≤ t

The dual norm of the `1 norm is the `∞ norm. So, we have s(k−1) ∈ −tδ‖∇f(x(k−1))‖∞. The Frank-Wolfe
update requires the subgradient of the `∞ norm. If |∇f(x(k−1))| has its component-wise maximum at i, then
the subgradient is the standard basis vector ei. This can be written as

ik−1 ∈ arg max
i=1,··· ,p

|∇if(x(k−1))|

x(k) = (1− γk)x(k−1) − γkt · sign
(
∇ik−1

x(k−1))
)
· eik−1

This looks like greedy coordinate descent since coordinate descent goes through the vector cyclically whereas
Frank-Wolfe here picks the largest component at each iteration. Note that this update is simpler than
projecting onto a `1 ball, although they both have the same computational complexity, ie, O(n).

23.4.2 `p Regularization

More generally, for the `p regularized problem

min
x
f(x) subject to ‖x‖p ≤ t

for 1 ≤ p ≤ ∞, we have s(k−1) ∈ −tδ‖∇f(x(k−1))‖q, where p, q are such that ‖ · ‖p is the dual of ‖ · ‖q. Recall
that this is true if and only if 1/p + 1/q = 1. Itis interesting to note that the subgradient of a given dual
norm can be computed efficiently using the following function, where α is a scaling factor and the rest is the
scaled form of the subgradient of max over `q norm.

s
(k−1)
i = −α · sign

(
∇fi(x(k−1))

)
· |∇fi(x(k−1))|p/q, i = 1, · · · , n

where α is such that the constraint is satisfied, ie, ‖s(k−1)‖q = t.
This is followed by the main update with a convex combination (γk) of (s(k−1), x(k−1)).
Note that these update rules are a lot simpler than projection onto the `p ball for any general p since
there exists no general projection rule. Aside from special cases (p = 1, 2,∞), these projections cannot be
computed directly, the projection step must be treated as an optimization.

23.4.3 Trace Norm Regularization

Here we discuss an example of Frank-Wolfe on a matrix valued problem, where you have a much cheaper
linear optimization oracle vs a projection (very big difference comparatively). The trace-regularized problem
takes the following form,

min
X

f(X) subject to ‖X‖tr ≤ t

Recall that the trace norm is the sum of the singular values of X. Now, to derive our update S we need
to (1) compute the dual norm, (2) find the subgradients of the resultant dual norm. We first note that the
dual of the trace norm is the operator norm (largest singular value of X), and obtain the following general
update,

S(k−1) ∈ −t∂
∥∥∥∇f(X(k−1))

∥∥∥
op
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We now claim that the update S(k−1) can be explicitly written as, S(k−1) = −tuvT , where u, v are the leading
left and right singular vectors of ∇f(X(k−1)) (recall proof from previous lectures). Hence, this means that
∂
∥∥∇f(X(k−1))

∥∥
op

= uvT . Further, note that we can compute u, v using the power method on ∇f(X(k−1)),

which is very cheap if the matrix is sparse.

We next consider, the alternative or projection onto the norm ball. This would require computing the full
SVD, which is more complex and expensive than Frank-Wolfe.

23.5 Constrained and Lagrange Norms

Recall that the solution of the constrained problem,

min
x
f(x) subject to ‖x‖ ≤ t

are equivalent to those of the Lagrange problem

min
x
f(x) + λ ‖x‖

From a stats/ML point of view there is no strong preference for constrained form vs penalized form. Typically,
you’d do whichever is cheaper and more convenient, then solve over a range of tuning parameter values (t
or λ for the first or second expression respectively) over [0,∞], and choose best via something like Cross
Validation. Furthermore, the two forms are not exactly equivalent. Solving for the best t or λ actually
results in different estimators and don’t have the same operator characteristics. Equivalency between t and
λ is instead data dependent. So if for instance the data is random, then the mapping between t and λ is
random.

Further, we should compare the Frank-Wolfe updates under ‖·‖ to projected gradient or proximal gradient
where we use the proximal operator of ‖·‖ depending on which is easier.

23.5.1 Method Comparisons over Various norms

• `1 norm: Frank-Wolfe update scans for maximum of gradient; proximal operator soft-thresholds the
gradient step; both use O(n) flops

• `p norm:Frank-Wolfe update raises each entry of gradient to power and sums, in O(n) flops; proximal
operator not generally directly computable

• Trace norm: Frank-Wolfe update computes top left and right singular vectors of gradient; proximal
operator soft-thresholds the gradient step, requiring a singular value decomposition

Various other constraints yield efficient Frank-Wolfe updates, e.g., special polyhedra or cone constraints,
sum-of-norms (group-based) regularization, atomic norms, See Jaggi (2011).

23.6 Example: Lasso comparison

Comparing projected and conditional gradient for the constrained lasso problem, with n=100, p=500: Note
that both projected gradient and Frank-Wolfe are both O(n), and both are just as cheap as one another so
there is no reason to use our presented version of Frank-Wolfe over projected gradient for this problem.

Further, we notice two things:
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Figure 23.2: Convergence of Projected Gradient (black) vs Frank-Wolfe (red)

• Frank-Wolfe is not a descent estimator as the objective is not monotonically decreasing over each k

• Frank-Wolfe converges slower than projected gradient

Lastly, Frank-Wolfe in this problem uses standard step sizes, and a different step size method such as line
search would probably help in terms of convergence.

23.7 Duality Gap

Frank-Wolfe iterations admit a very natural duality gap:

f(x(k))T (x(k) − s(k))

Claim: this upper bounds on f(x(k))− f∗
Proof: by the first-order convexity condition,

f(s) ≥ f(x(k)) +∇f(x(k))T (s− x(k))

Minimizing both sides over all s ∈ C yields,

f∗ ≥ f(x(k)) + min
s∈C
∇f(x(k))T (s− x(k))

= f(x(k)) +∇f(x(k))T (s− x(k))

Which can then be re-written as,

f∗ ≥ f(x(k)) +∇f(x(k))T (s− x(k))
−∇f(x(k))T (s(k) − x(k)) ≥ f(x(k))− f∗

∇f(x(k))T (x(k) − s(k)) ≥ f(x(k))− f∗
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Hence, we have shown the upper bound.

Why do we call this a ”duality gap”? Re-write original problem as

minxf(x) + IC(x)

Where IC is the indicator function of C. The dual problem is then (by conjugate and dual of indicator
function),

max
u
−f∗(u)− I∗C(−u)

Where I∗C is the support function pf C. If we then choose and x, u that are feasible in the primal and dual
respectively, then IC(x) = 0 and we obtain the following duality gap,

f(x)− (−f∗(u)− I∗C(−u)) = f(x) + f∗(u) + I∗C(−u)

Then, by Fenchel’s inequality,

f(x) + f∗(u) + I∗C(−u) ≥ xTu+ I∗C(−u)

Evaluating this at x = x(k), u = ∇f(x(k)), we obtain:

∇f(x(k))Tx(k) + max
s∈C
−∇f((k))T s = ∇f((k))T (x(k) − s(k))

Which is our duality gap.

23.8 Convergence Analysis

Following Jaggi (2011), define the curvature constant of f over C:

M = max
γ∈[0,1]
x,s,y∈C

y=(1−γ)x+γs

2

γ2
(
f(y)− f(x)−∇f(x)T (y − x)

)

Note that M = 0 for linear f , big if f is highly curved over the set C, and f(y)− f(x)−∇f(x)T (y − x) is
called the Bregman divergence from x to y, defined by f

Theorem 1 The Frank-Wolfe method using standard step sizes γ = 2
k+1 , k = 1, 2, 3... satisfies,

f(x(k))− f∗ ≤ 2M

k + 2

Then, the number of iterations needed for f(x(k))− f∗ ≤ ε is O(1/ε).

This matches the sublinear rate for projected gradient descent for Lipschitz ∇f , but how do the assumptions
compare?

For Lipschitz ∇f with constant L, recall,

f(y)− f(x)−∇f(x)T (y − x) ≤ L

2
‖y − x‖22
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Maximizing over all y = (1− γ)x+ γs, and multiplying by 2/γ2,

M ≤ max
γ∈[0,1]
x,s,y∈C

y=(1−γ)x+γs

2

γ2
· L

2
‖y − x‖22

= max
x,s∈C

L ‖x− s‖22 = L · diam2(C)

Where diam2(C) is the squared diameter of the set C. So, if f has a gradient that is Lipschitz, and C is
compact, then it immediately has a curvature that is finite and that is at most L · diam2(C).

Hence assuming a bounded curvature is basically no stronger than what we assumed for projected gradient.

23.9 Affine invariance

One of important properties that are not shared with the projected gradient method is affine invariance.
For nonsingular matrix A, define x = Ax′ and F (x′) = f(x) = f(Ax′). Consider Frank-Wolfe on F and
x ∈ C, x = Ax′ ⇐⇒ x′ ∈ A−1C, we have

s′ = arg min
z∈A−1C

∇F (x′)T z

(x′)+ = (1− γ)x′ + γs′

By multiplying A on both sides,
A(x′)+ = (1− γ)Ax′ + γAs′

and then by applying ∇F (x′) = AT∇f(Ax′),

As′ = A · arg min
z∈A−1C

∇F (x′)T z

= A · arg min
Az∈C

∇f(Ax′)TAz

= AA−1 arg min
w∈C
∇f(Ax′)Tw

= arg min
w∈C
∇f(Ax′)Tw

which produces the same Frank-Wolfe update as that from f .

Convergence analysis is also affine invariant. The curvature constant M of F :

max
γ∈[0,1]

x′,s′,y′∈A−1C
y′=(1−γx′+γs′)

2

γ2
(
F (y′)− F (x′)−∇F (x′)T (y′ − x′)

)

matches that of fm because ∇F (x′)T (y′ − x′) = ∇f(x)T (y − x).

23.10 Inexact updates

Suppose we choose s(k−1) so that

∇f(x(k − 1))T s(k−1) ≤ min
s∈C
∇f(x(k−1))T s+

Mγk
2
· δ
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where δ ≥ 0 is an inaccuracy parameter. Then we attain the same rate.

Theorem: Frank-Wolfe using step sizes γk = 2
k+1 , k = 1, 2, 3, . . . , and inaccuracy parameter δ ≥ 0, satisfies

f(x(k))− f∗ ≤ 2M

k + 1
(1 + δ)

23.11 Two variants

There are two important variants of Frank-Wolfe method.

23.11.1 Line search

Instead of using fixed step size γk = 2
k+1 , we can use

γk = arg min
γ∈[0,1]

f
(
x(k−1) + γ(s(k−1) − x(k−1))

)
at each k = 1, 2, 3, . . . , or we could use backtracking.

23.11.2 Fully corrective

We update x directly according to

x(k) = arg min
y
f(y) subject to y ∈ conv{x(0), s(0), s(k−1)}

Fully corrective is fairly expensive, but can lead to much faster convergence.

23.12 Path following

Given the norm constrained problem

min
x
f(x) subject to ||x|| ≤ 1

Frank-Wolfe can be used for path following, i.e. we can produce an approximate solution path x̂(t) that is
ε-suboptimal for every t ≥ 0. Beginning at t0 = 0 and the only feasible point x∗(0) = 0, we fix parameters
ε,m > 0, then repeat for k = 1, 2, 3, . . .
Calculate

tk = tk−1 +
(1− 1

m )ε

||∇f(x̂(tk−1))||∗

and set x̂(t) = x̂(tk−1) for all t ∈ (tk−1, tk).

Compute x̂(tk) by running Frank-Wolfe at t = tk, terminating when the duality gay is ≤ ε
m .
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