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Convexity 1: Sets and functions

A convex optimization problem is of the form

min
x∈D

f(x) (2.1)

subject to
gi(x) ≤ 0, for i = 1, . . . ,m (2.2)

and
hj(x) = 0, for j = 1, . . . , r, (2.3)

where f and all gi are convex, and all hj are affine. These problems have the special property that a local
minimum is a global minimum.

From now on, we will drop the domain notation D (as in x ∈ D), and just deal with x.

2.1 Convex sets

A convex set C ∈ Rn is one where a line segment joining any two elements lies entirely inside the set. This
can be written

x, y ∈ C =⇒ tx+ (1− t)y ∈ C for all 0 ≤ t ≤ 1. (2.4)

A convex combination is a weighted sum of elements where the weights are non-negative and sum to one.

A convex hull of a set is all convex combinations of elements – it is convex by construction. The convex hull
is the smallest convex set that contains the set.

2.1.1 Examples of convex sets

• empty set

• point

• line

• norm ball {x : ‖x‖ ≤ r} for a given norm, and a given radius r;
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• hyperplanes {x : aTx = b} for a given a, b

• halfspace {x : aTx ≤ b}

• affine space {x : Ax = b} for given A, b

• polyhedron {x : Ax ≤ b} where the inequality is interpreted component-wise. (A is a matrix, x, b are
vectors, so we compare the elements of Ax and b.) Note that polyhedron is the intersection of a finite
number of halfspaces (and hyperplanes).

• simplex, which is a special case of a polyhedra, given by conv{x0, . . . , xk}, where these vectors are
affinely independent, and conv denotes the convex hull of the points. (A set of vectors x1, . . . , xk

is affinely independent if
[∑k

i=1 aixi,
∑k

i=1 ai = 0
]
⇐⇒ ai = 0 for all i. Affine independence

implies linear independence.) The canonical example of a simplex is the probability simplex, written
conv{e1, . . . , en} = {w : w ≥ 0, 1Tw = 1}, where the ei are the standard unit vectors.

• convex cone. First of all, a cone is given by C ⊆ Rn such that x ∈ C =⇒ tx ∈ C for all t ≥ 0. Cones
are not necessarily convex, since they might be hollow. However, convex cones are convex! These are
defined by x1, x2 ∈ C =⇒ t1x1 + t2x2 ∈ C for all t1, t2 ≥ 0.

• conic combination of x1, . . . , xk ∈ Rn, which means any linear combination θ1x1 + . . . + θkxk with
θi ≥ 0 for all i.

• conic hull: this is the union of all conic combinations of a set of points.

• norm cone (a type of convex cone): {(x, t) : ‖x‖ ≤ t} for any norm. Under the L2 norm, this is a
second-order cone. This cone is sometimes called the ice cream cone.

• normal cone (a type of convex cone): given any set C and point x ∈ C, we can define the “normal
cone to the set” as NC(x) = {g : gTx ≥ gT y for all y ∈ C}. This can be equivalently written as
NC(x) = {g : gT (x − y) ≥ 0 for all y ∈ C}. In other words, if you form any vector (x − y) from
elements in the set, the dot product with g will be greater than zero, meaning the vectors are more
than 90 degrees apart – this is what makes it “normal to” the set. Note this does not depend on the
set C, because you’re just forming a cone away from it.

• positive semidefinite cone (a type of convex cone): Sn+ = {X ∈ Sn : X � 0} where Sn is the set of n×n
symmetric matrices, and X � 0 means that X is positive semidefinite (In more detail, X � 0 means
that the smallest eigenvalue of X is greater than zero, which also means a+Xa ≥ 0 for all a. We can
also say A � B =⇒ A−B � 0.)

Let’s check to see if semidefinite cones truly are convex. We have Sn
+ = {x : x ≥ 0}. Take X,Y ∈ Sn+.

To prove convexity, we want t1X + t2Y � 0. Since the matrices X,Y are positive semidefinite, we can
use a+Xa ≥ 0 for all a to write aT (t1X + t2Y )a = t1(aTXa) + t2(aTY a) ≥ 0.

2.1.2 Key properties of convex sets

• Separating hyperplane theorem: two disjoint convex sets have a separating hyperplane between them.
In other words, if C,D are nonempty convex sets with C

⋂
D = ∅, then there exists a, b such that

C ⊆ {x : ATx ≤ b} and D ⊆ {x : ATx ≤ b}.
If two sets do not intersect, is there always a hyperplane that strictly separates them? Consider the
set {(x, y) : y ≤ 0}, and also the epigraph {(x, y) : y ≥ bx, x ≥ 0}. The second set will get infinitely
close to the first, so you cannot put a hyperplane bewteen them. This means you cannot expect that
disjoint sets will be strictly separated.
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• Supporting hyperplane theorem: a boundary point of a convex set has a supporting hyperplane passing
through it. Formally, if C is a nonempty convex set, and x0 ∈ bd(C), there exists a such that
C ⊆ {x : aTx ≤ aTx0}.

2.1.3 Operations preserving convexity

• Intersection

• Scaling and translation

• Affine images and preimages. If you give me an affine function, like f(x) = Ax + b (whereas linear
would be f(x) = Ax)), and C is convex, then f(C) = {f(x) : x ∈ C is convex. Also, if D is convex,
then the inverse (or pre-image) f−1(D) = {x : f(x) ∈ D} (whether it exists or not,) is convex. This
will be a useful fact later.

2.1.4 Example: Linear matrix inequality solution set

Given A1, . . . , Ak, B ∈ Sn, a linear matrix inequality for a variable x ∈ Rk looks like

x1A1 + . . .+ xkAk � B. (2.5)

Let’s prove that the set C of points x that satisfy the above inequality is convex.

First approach: check that if two points lie in the set, then all in-between points lie in the set. We can check

this by seeing that this is true for any v: vT
(
B −

∑k
i=1(txi + (1− t)i)Ai

)
v ≥ 0.

Second approach: define Sn+ = {Y, Y � 0} which is convex, and define f(x) = B −
∑
xiAi, then

f−1(SN+ ) = {x : f(x) ∈ SN
+ } = {x : B −

∑
xiAi � 0} = our set! (2.6)

2.1.5 More operations preserving convexity

• Perspective images and preimages. (There is a relationship here to pinhole cameras!)

• Linear-fractional images and preimages: The perspective map composed with an affine function, like
f(x) = (Ax+ b)/(cTx+ d), called a linear-fractional function, preserves convexity! So if C ⊆ dom(f)
is contex, then so is f(C), and if D is convex then so is f−1(D).

2.2 Convex functions

A convex function f maps from Rn to R such that dom(f) ⊂ Rn is convex, and

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) for ≤ t ≤ 1 and x, y ∈ dom(f). (2.7)

In other words, the function always lies below the line segment joining f(x) and f(y). Concave functions
have the opposite inequality, and f being concave implies −f is convex.

Important modifiers:

• Strictly convex: same definition but with strict inequalities, and the function is strictly below the line
segments. The way I think about this is: f has more curvature than a linear function. Linear functions
are convex but not strictly convex.
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• Strongly convex with parameter m > 0: this says that if you subtract a quadratic, it’s still convex:
f −m/2 ‖x‖2 is convex. In other words, f is more convex/curved than a quadratic function.

Note that strong convexity implies strict convexity, which implies convexity. All of this is analogous for
concave functions!

2.2.1 Examples of convex functions

• Univariate functions (eax for any a ∈ R, xa for a ≥ 1, xa for a ≤ 0 when x ∈ R+; xa is concave for
0 ≤ a ≤ 1 for x ∈ R+, log x is concave over R++.-

• affine functions aTx+ b are both convex and concave

• quadratic functions 1
2x

TQx+ bTx+ c are convex provided that Q � 0 (i.e., Q is positive semidefinite).

• least squares, like ‖y −Ax‖2, because if you expand it, it looks like a quadratic function with Q = ATA,
and ATA is always positive semidefinite (since bTATAb ≥ 0 since zT z =

∑
z2i where z = Ab).

• Norms – all of them are convex! (Three things define a norm; briefly, these are: ‖x‖ ≥ 0, ‖αx‖ =
|α| ‖x‖, and ‖x + y‖ ≤ ‖x‖+ ‖y‖. These also provide convexity.)

The most common p-norms are 1, 2,∞. The L1 norm is good for inducing sparsity, L2 is ubiquitous
because we use it to measure distances, and L∞ is useful for reasons we’ll see later. (Note that the
L0 norm does not satisfy the triangle inequality, so it is not a norm, not convex, and not our friend.)
Operator (also called spectral) and trace (also called nuclear) norms are also convex.

• Indicator functions. If C is convex, then the indicator function IC(x), defined as 0 inside the set and
∞ outside, is also convex.

Let’s check this. We have f(x) = IC(x). We need to first check the domain: dom(f) = C is convex
by assumption; good. Now, for any convex combination of x, y ∈ dom(f), we need f(tx+ (1− t)y) ≤
tf(x)+(1− t)f(y). On the right hand side, f(x) and f(y) are zero (since x, y are in the domain), so we
have tf(x) + (1− t)f(y)) ≤ t0 + (1− t)0 = 0. On the left hand side, we know the term (tx+ (1− t)y)
lies inside the set (since the domain C is convex), and the indicator function gives 0 for all values in
the set, so we have 0 = 0 and we are done.

2.2.2 Key properties of convex functions

• Epigraph characterization: a function f is convex ⇐⇒ its epigraph (which is the set of all points
above the function) is a convex set. In other words, f is convex if its epigraph epi(f) = {(x, t) ∈
dom(f)× R : f(x) ≤ t} is also convex.

• Convex sublevel sets: if f is convex, then its sublevel sets, defined by {x ∈ dom(f) : f(x) ≤ t}, are
convex, for all t ∈ R. The converse is not true!

• First-order characterization: if f is differentiable, then f is convex ⇐⇒ dom(f) is convex and
f(y) ≥ f(x) + ∇f(x)T (y − x) for all x, y ∈ dom(f). This means that in a differentiable convex
function, ∇f(x) = 0 =⇒ x minimizes f .

• Second-order characterization: if f is twice differentiable, then f is convex ⇐⇒ dom(f) is convex,
and ∇2f(x) � 0 for all x ∈ dom(f).

You might wonder about that inequality. Consider f(x) = x4, which is quadratic, with second deriva-
tive zero at zero. So, it’s strictly convex, but the second derivative is not strictly positive.

• Jensen’s inequality: if f is convex, and X is a random variable on dom(f), then f(E[X]) ≤ E[f(x)].
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• Log-sum-exp function: g(x) = log
(∑k

i=1 e
aT
i x+bi

)
for fixed ai, bi. This is often called the soft max,

since it smoothly approximates maxi=1,...,k(aTi x+ bi).

2.2.3 Operations preserving convexity

• Nonnegative linear combination: f1, . . . , fm being convex implies a1f1 + . . .+ amfm is also convex, for
any ai ≥ 0.

• Pointwise maximization: if fs for s ∈ S are all convex, then the pointwise max of them is also convex.
Note that the functions can be discrete or continuous, and the set S can even be infinite!

• Partial minimization: if g(x, y) is convex in x, y, and C is convex, then f(x) = miny∈Cg(x, y) is convex.

2.2.4 Example: distances to a set

Consider the max (or min) distance to a set, under an arbitrary norm, written f(x) = maxy∈C ‖x− y‖, is
convex (whether C is convex or not). This is because the norm is convex, and the pointwise max is also
convex. As for the min distance to the set, it is convex as long as the set C is convex.


