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4.1 Recap

Important points we have covered till date include:

(1) Convex problems: (1) general structure, (2) local minima are global, and (3) convex combinations of
minima are minima.

(2) First order optimality: For a convex problem minx f(x) s.t. x ∈ C and differentiable f , a feasible point
x is optimal if and only if ∇f(x?)(y − x?) ≥ 0 ∀y ∈ C.

(3) Rewriting convex problems: (1) eliminating constraints, (2) partial optimization.

4.2 Relaxations

A relaxation involves turning a given problem into one with looser constraints (“enlarging the feasible set”)
such that the new problem is ideally easier to solve.

min
x∈C

f(x)⇒relax min
x∈C̃

f(x), where C̃ ⊇ C.

The optimal value of a relaxation is always less than or equal to the optimal value of the original problem.
We say that a relaxation is tight if the solution to the relaxed problem is still a feasible point of the original
problem.

4.2.1 Relaxing non-affine equality constraints

For functions gi(x), i ∈ {1, . . . , d} that are convex but not affine, we relax

min f(x)

s.t. gi(x) = 0, i ∈ {1, . . . , d}
Ax = b

hi(x) ≤ 0

=⇒relax

min f(x)

s.t. gi(x) ≤ 0, i ∈ {1, . . . , d}
Ax = b

hi(x) ≤ 0

as the original formulation is a non-convex problem (non-affine equalities are not convex). The relaxed
formulation turns affine equalities into affine inequalities, so thus has more feasible points and is now convex.
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4.2.2 Examples

(1) Maximum utility problem:

max
x,b

T∑
t=1

αtu(xt)

s.t. bt+1 = bt + f(bt)− xt, t = 1, . . . , T

0 ≤ xt ≤ bt, t = 1, . . . , T

=⇒relax

max
x,b

T∑
t=1

αtu(xt)

s.t. bt+1 ≤ bt + f(bt)− xt, t = 1, . . . , T

0 ≤ xt ≤ bt, t = 1, . . . , T,

where bt is the budget at time t, xt is the amount consumed at time t, αt is the weighting of the
importance of each timestep, f is the investment return function, u is the utility function (f, u are both
concave and increasing).

The original formulation is not convex due to the equality constraints. The relaxation is convex and
actually tight. The intuition is that you have at most the original amount of money, but you can throw
some money away if you want; this is tight, since at optimum, you wouldn’t throw away any money.

(2) PCA: Given matrix X ∈ Rn×d, we want to find a low-rank approximation via

min
R

||X −R||2F

s.t. rank(R) = k,

where ||A||F is the Frobenius norm. This is non-convex because rank is not convex.

We can compute the optimal solution by using a SVD truncated to the first k columns/elements:
R∗ = UkDkV

T
k

⇒relaxation

min
Z

||X −XZ||2F

s.t. rank(Z) = k

where Z ∈ Sd is a projection matrix (i.e. Z = VkV
T
k ).

However, this is still non-convex.

⇒relaxation

min
Z

tr((X −XZ)T (X −XZ))

s.t. rank(Z) = k

which is equivalent to

max
Z

tr(XTXZ)

s.t. rank(Z) = k

using the fact that a projection matrix is idempotent: Z = ZZT .
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Since a projection matrix has eigenvalues either 0 or 1, we can represent the constraint set in the fol-
lowing form:

max
Z

tr(XTXZ)

s.t. {Z : tr(Z) = k, Z ∈ S, λi(Z) ∈ {0, 1}}

Where λi(Z) are the eigenvalues of Z.
However, λi(Z) ∈ {0, 1} is non-convex.

⇒relaxation

max
Z

tr(XTXZ)

s.t. {Z : tr(Z) = k, Z ∈ S, λi(Z) ∈ [0, 1]}

This relaxation can also be seen as the convex hull of the previous constraint set.
And this is simply the Fantope of order k.

Fk = {Z : tr(Z) = k, Z ∈ S, λi(Z) ∈ [0, 1]} = {Z : tr(Z) = k, Z ∈ S, 0 � Z � I} And the Fantope is
convex.

So, the following formulation is convex

max
Z∈Fk

tr(XTXZ)

This relaxation is also tight, since Z = VkV
T
k if Vk was unique from the SVD.

4.3 Canonical Problem Types

The following graphic illustrates the relationship between the different types of convex problems. Note that
conic programs are a subset of convex programs, which are a subset of non-convex programs. (Note: Second-
order cone programs are in between QPs and SDPs.)
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4.3.1 Linear Programs (LPs)

General form:

min
x

cTx

s.t. Ax = b

Dx ≤ d

⇐⇒

Standard form:

min
x

cTx

s.t. Ax = b

x ≥ 0

The LP standard form eliminates all inequalities from the general form except for element-wise simple
inequalities, and is equivalent to the general form. In particular, one can translate from the general form to
the standard form by adding slack variables s so that the constraints Dx ≤ d become Dx+ s = d, s ≥ 0.

Each constraint defines the feasible region (which is a polytope). We note that the optimum of an LP is
always at a corner of the feasible polytope.

Examples:

(1) Diet problem. Find the cheapest combination of foods that satisfy some nutritional requirements via
minx cTx s.t. Dx ≥ d, x ≥ 0, where xj is the units of food j in the diet, cj is the per-unit cost of food
j, di is the minimum required intake of nutrient i, and Dij is the content of nutrient i per unit of food j.

(2) Basis pursuit. Given y ∈ Rn and X ∈ Rn×p, where p > n, find the sparsest solution to the un-
derdetermined linear system Xβ = y. The original formulation is nonconvex, but we can form an `1
approximation (“basis pursuit”) that is an LP.

Orig formulation:

min
β

‖β‖0

s.t. Xβ = y

=⇒

Basis pursuit:

min
β

‖β‖1

s.t. Xβ = y

=⇒

LP formulation:

min
β,z

1T z

s.t. z ≥ β
z ≥ −β
Xβ = y.

The LP formulation is equivalent to basis pursuit since z = |β| is the minimum z that satisfies the z ≥ β,
z ≥ −β constraints, and we have a minimization objective.

(3) Danzig selector. Modification of previous problem, where we allow Xβ ≈ y: minβ ‖β‖1 s.t. ‖XT (y−
Xβ)‖∞ ≤ λ, where λ ≥ 0 is a tuning parameter. This can be reformulated as an LP.

4.3.2 Convex quadratic programs (QPs)

General form:

min
x

cTx+
1

2
xTQx

s.t. Ax = b

Dx ≤ d

⇐⇒

Standard form:

min
x

cTx+
1

2
xTQx

s.t. Ax = b

x ≥ 0.

The above problem is only convex when Q � 0. (When we say “quadratic program,” we implicitly
assume this condition and thus that the quadratic program is convex.) As with linear programs, the general
and standard forms are equivalent and can be translated between via slack variables.

Examples:
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(1) Markowitz portfolio optimization. Construct a financial portfolio, trading off performance and
risk, via minx µTx − γ

2x
TQx s.t. 1Tx = 1, x ≥ 0, where xj is the percentage of holdings that asset j

represents, µ is the assets’ expected returns, Q is the covariance matrix of the assets’ returns, and γ is
the decisionmaker’s risk aversion.

(2) Support vector machines. Given y ∈ {−1, 1}n and X ∈ Rn×p with rows x1, . . . , xn, the SVM problem
is quadratic. This can be readily seen from the hinge form of SVM, which is equivalent to the original
form.

Original form:

min
β,β0,ξ

1

2
‖β‖22 + C

n∑
i=1

ξi

s.t. ξi ≥ 0, i = 1, . . . , n

yi(x
T
i β + β0) ≥ 1− ξi, i = 1, . . . , n.

=⇒
Hinge form (QP):

min
β,β0

1

2
‖β‖22 + C

n∑
i=1

[1− yi(xTi β + β0)]+

(3) Lasso. Given y ∈ Rn, X ∈ Rn×p, the lasso problem minβ ‖y −Xβ‖22 s.t. ‖β‖1 ≤ s, where s ≥ 0 is a
tuning parameter, can be reformulated as a QP. Its alternative parameterization (Lagrange, or penalized
form) minβ ‖y −Xβ‖22 + λ‖β‖1, where λ ≥ 0 is a tuning parameter, can also be rewritten as a QP.

4.3.3 Semidefinite programs (SDPs)

SDPs are basically a generalization of linear programs, where now the decision variable X is a matrix and
we generalize the ≤ operator to a different (partial) order. This is another convex class of problems.

To write the SDP, we first define, given X,Y ∈ Sn:

• An inner product X • Y ≡ tr(XTY ).

• A partial ordering X � Y ⇐⇒ X − Y ∈ Sn+, where Sn+ is the set of positive semidefinite matrices.
(As a special case, for x, y ∈ Rn, diag(x) � diag(y) ⇐⇒ x ≥ y.)

For Fj ∈ Sd for j = 0, 1, . . . , n; A ∈ Rm×n; c ∈ Rn; and b ∈ Rm, SDPs then have the following form.

General form:

min
x

cTx

s.t. Ax = b

x1F1 + . . .+ xnFn � F0

⇐⇒

Standard form:

min
X

C •X

s.t. Ai •X = bi, i = 1, . . . ,m

X � 0.

Examples:

(1) Trace norm minimization/matrix completion. Let A : Rm×n → Rp be a linear map

A(X) =

A1 •X
· · ·

Ap •X


for A1, . . . , Ap ∈ Rm×n. Finding the lowest rank-solution to an underdetermined system is nonconvex,
but it can be shown that its trace norm approximation is an SDP (proof uses duality).

Original form:

min
X

rank(X)

s.t. A(X) = b.

=⇒

Trace norm approximation:

min
X

‖X‖tr

s.t. A(X) = b.
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The intuition behind this relaxation is that rank(X) =
∑
i 1{σi(x) 6= 0}, i.e. the `0-norm of the

singular values, so as we saw with the basis pursuit problem, we use an `1 norm relaxation (where
‖X‖tr =

∑
i σi(x)).

4.3.4 Conic programs

Conic programs are of the form

min
x

cTx

s.t. Ax = b

D(x) + d ∈ K,

where c, x ∈ Rn, A ∈ Rm×n, b ∈ Rm; D : Rn → Y is a linear map and d ∈ Y for a Euclidean space Y ; and
K ⊆ Y is a closed convex cone.

LPs and SDPs are special cases of conic programming. When K = Rn+, this is equivalent to an LP. For
K = Sn+, this is equivalent to an SDP. We will talk about conic programs in more detail next class.


