10-725/36-725: Convex Optimization		Fall 2018
Lecture	e 6: September 17	
Lecturer: Lecturer: Ryan Tibshirani	Scribes: Heejong Bong, Wanshan Li, Shaminda	ra Shrotriya

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

6.1 Convergence Analysis of Optimization Algorithms

In our previous class we learned the following theorem for f is differentiable with Lipschitz and nonconvex. **Theorem** (Gradient Descent with fixed step size). Gradient Descent with fixed step size $t \leq \frac{1}{L}$ results satisfies

$$\min_{i=0,1,2,\dots k} \|\nabla f(x^{(i)})\|_2 \le \sqrt{\frac{2(f(x^{(k)}) - f(x^{(0)})}{t(k+1)}}$$

Thus gradient descent has rate $O(\frac{1}{\sqrt{k}})$, or $O(\frac{1}{\epsilon^2})$, even in the nonconvex case for finding stationary points

Proof (Sketch). From the lectures the key steps for the proof are as follows:

1. ∇f Lipschitz with constant L means:

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{L}{2} ||y - x||_2^2 \text{ all } x, y$$

2. Plugging in $y = x^+ = x - t\nabla f(x)$,

$$f\left(x^{+}\right) \leq f(x) - \left(1 - \frac{Lt}{2}\right) t \|\nabla f(x)\|_{2}^{2}$$

3. Taking $0 < t \le 1/L$, and rearranging

$$\|\nabla f(x)\|_{2}^{2} \leq \frac{2}{t} \left(f(x) - f(x^{+})\right)$$

4. Summing over iterations

$$\sum_{i=0}^{k} \left\| \nabla f\left(x^{(i)}\right) \right\|_{2}^{2} \leq \frac{2}{t} \left(f\left(x^{(0)}\right) - f\left(x^{(k+1)}\right) \right) \leq \frac{2}{t} \left(f\left(x^{(0)}\right) - f^{\star} \right)$$

5. Lower bound sum by $(k+1) \min_{i=0,...,k} \|\nabla f(x^{(i)})\|_{2}^{2}$

6.1.1 Anatomy of Convergence Rate Proof

The proof for the previous theorem follows the following general construction (framework):

Step 1. Start with some quadratic upper and lower bound on f(y) and f(x) (current iteration)

- Lipschitz gradient: \implies we can upper bound f(y)
- Strong convexity: \implies we can lower bound f(y)

Step 2. Establish some 'sufficient descent' property of $f(x^+)$ (next iteration)

• e.g. in gradient descent with $t \leq \frac{1}{L}$ we have $f(x^+) \leq f(x) - \frac{t}{2} \|\Delta f(x)\|_2^2$

Step 3. Iterate/ recurse the above process to get a global statement about $f(x^*)$ or x^*

In the non-convex case above we leveraged Step 3 to get a property with a stationary point. Note that not every stationary point is useful or interesting (e.g. local minima) and stationarity in itself is a pretty weak property. Most of the time it is sufficient and most cases settle in a local minima.

6.2 Gradient Boosting

6.2.1 Gradient Boosting - Problem Setup

Suppose that we are given responses $y_i \in \mathbb{R}$ and features $x_i \in \mathbb{R}^p \quad \forall i \in \{1, 2, ..., n\}$ We want to construct a flexible (*nonlinear*) model for response based on features. Weighted sum of trees:

$$u_i = \sum_{j=1}^m \beta_j \cdot T_j(x_i) \quad \forall i \in \{1, 2, \dots, n\}$$

Each tree T_i inputs x_i and outputs a predicted response. Typically trees are pretty short.

We have flexibility to pick a suitable loss function L to reflect setting e.g for continuous responses we can take the squared error loss function $L(y_i, u_i) = (y_i u_i)^2$. We then want to ideally solve

$$\min_{\beta} \sum L\left(y_i, \sum_{j=1}^M \beta_j \cdot T_j(x_i)\right)$$

Indexes all trees of a fixed size (e.g., depth = 5), so M is huge. Space is simply too big to optimize!

6.2.2 Gradient Boosting - Procedure

Key idea: Here we essentially do gradient descent on some loss function where we map gradients to vector of projections by a tree. This essentially forms a big cluster of weighted summed trees.

More specifically we have the following procedure:

First think of optimization as $\min_u f(u)$, over predicted values u, subject to u coming from trees. Start with initial model, a single tree $u^{(0)} = T_0$ and then repeat the following:

• Compute negative gradient d at latest prediction $u^{(k-1)}$

$$d_i = -\left[\frac{\partial L(y_i, u_i)}{\partial u_i}\right]\Big|_{u_i = u_i^{(k-1)}} \quad \forall i \in \{1, 2, \dots, n\}$$

• Find a tree T_k that is close to a, i.e., according to

$$\min_{\text{trees }T} (d_i - T(x_i))^2$$

This is not hard to (approximately) solve for a single tree

• Compute step size α_k , and update our prediction:

$$u^{(k)} = u^{(k-1)} + \alpha_k T_k$$

Note: predictions are weighted sums of trees, as desired

6.3 Subgradients

Key idea: Subgradients are a generalization of gradients. Our focus is mainly non-differentiable convex functions and subgradients provide a fairly general concept of optimality.

Definition (Subgradient). The subgradient of a convex function f at $x \in dom(f)$ is:

$$g \in \mathbb{R}^n s.t. f(y) \ge f(x) + g^T(y-x) \quad \forall y$$

6.3.1 Useful facts

- 1. The subgradient of f always exists, for points that are in the relative interior of dom(f).
- 2. If f is differentiable at x, then subgradient $g = \nabla f(x)$ uniquely.
- 3. For nonconvex function, the same definition works, but the subgradient need not exist.

6.3.2 Examples of Subgradients

The following are some useful examples of subgradients.

1. $f : \mathbb{R} \to \mathbb{R} : x \mapsto |x|$.

 $\begin{cases} \text{Unique subgradient } g = \text{sign}(x), \text{ for } x \neq 0, \\ g \text{ is any element of } [-1,1], \text{ for } x = 0. \end{cases}$

2. $f : \mathbb{R}^n \to \mathbb{R} : x \mapsto ||x||_2.$

 $\begin{cases} \text{Unique subgradient } g = x/\|x\|_2, \text{ for } x \neq 0, \\ g \text{ is any element of } \{z : \|z\|_2 \leq 1\}, \text{ for } x = 0. \end{cases}$

3. $f : \mathbb{R}^n \to \mathbb{R} : x \mapsto ||x||_1$. For $1 \le i \le n$

 $\begin{cases} \text{Unique subgradient } g_i = \text{sign}(x), \text{ for } x_i \neq 0, \\ g_i \text{ is any element of } [-1, 1], \text{ for } x_i = 0. \end{cases}$

4. $f = \max\{f_1, f_2\}$, where $f_1, f_2 : \mathbb{R}^n \to \mathbb{R}$ are convex and differentiable.

$$\begin{cases} g = \nabla f_1(x), \ f_1(x) > f_2(x), \\ g = \nabla f_2(x), \ f_2(x) > f_1(x), \\ g \text{ is any point on line segment between } \nabla f_1(x) \text{ and } \nabla f_2(x), \ f_1(x) = f_2(x). \end{cases}$$

To see this, notice that when $f_1(x) > f_2(x)$, f acts like f_1 in a neighborhood of x, because convex function is continuous in the interior of its domain.

6.4 Subdifferentials

Definition (Subdifferential). The subdifferential of a convex function f at $x \in \text{dom}(f)$ is

 $\partial f(x) = \{g \in \mathbb{R}^n : g \text{ is a subgradient of } f \text{ at } x\}.$

6.4.1 Useful facts

- 1. The subdifferential is nonempty for convex function f (again, in the relative interior of dom(f)).
- 2. $\partial f(x)$ is closed and convex, even for nonconvex function f.
- 3. If f is differentiable at x and $\nabla f(x) = g$, then $\partial f(x) = \{g\}$.
- 4. If $\partial f(x) = \{g\}$, then f is differentiable at x and $\nabla f(x) = g$.

Proposition (Connection to convex geometry). Suppose C is a convex set in \mathbb{R}^n . Then, for $x \in C$, $\partial I_C(x) = N_C(x)$, where

$$I_C(x) = \begin{cases} 0, \ x \in C, \\ \infty, \ x \notin C, \end{cases}$$

and

$$N_C(x) = \{ g \in \mathbb{R}^n : g^\top x \ge g^\top y \text{ for any } y \in C \}.$$

Recall that $N_C(x)$ is called normal cone of set C at point x.

Proof. By definition, g is the subgradient at x if and only if,

$$I_C(y) \ge I_C(x) + g^{\top}(y-x), \ \forall y.$$

For $y \notin C$, $I_C(y) = \infty$ and the inequality holds, while for $y \in C$, $I_C(y) = 0$ and the inequality is equivalent to

$$0 \ge g^\top (y - x).$$

Proposition (Subgradient calculus). Some useful facts of subgradient calculus:

- Scaling: $\partial(af) = a \cdot \partial f$ provided a > 0 (to make af convex).
- Addition: $\partial(f_1 + f_2) = \partial f_1 + \partial f_2$.
- Affine composition: if g(x) = f(Ax + b), then $\partial g(x) = A^{\top} \partial f(Ax + b)$.
- Finite pointwise maximum: $f(x) = \max_{1 \le i \le n} f_i(x)$, then

$$\partial f(x) = \operatorname{conv}\left(\bigcup_{i:f_i(x)=f(x)} \partial f_i(x)\right),$$

i.e., convex hull of the union of subdifferentials of active functions at x.

• General poinwise maximum: $f(x) = \max_{s \in S} f_s(x)$, then

$$\partial f(x) \supseteq \operatorname{Cl}\{\operatorname{conv}\left(\bigcup_{s:f_s(x)=f(x)}\partial f_s(x)\right)\},\$$

where Cl(C) means closure of C, and one should notice that $conv\left(\bigcup_{s:f_s(x)=f(x)}\partial f_s(x)\right)$ need not be closed if S is infinite. Under some regularity conditions on S and f_s , e.g., f_s is continuous for all s, we can get equality.

• Norms: $f(x) = ||x||_p$, x need not in a finite dimension, let q be such that 1/p + 1/q = 1, then

$$||x||_p = \max_{z:||z||_1 \le 1} z^\top x.$$

Hence, $\partial f(x) = \arg \max_{z:||z||_1 < 1} z^\top x.$

6.4.2 Importance of subgradient

- Convex analysis: KKT condition \rightarrow optimality characterization; monotonicity; relationship to duality.
- Convex optimization: if you can compute subgradient, then you can minimize any convex functions.

6.5 Optimality conditions

Here we note some optimality criteria involving subgradients with a particular focus on convex functions. **Proposition** (subgradient optimality condition). For any function f,

$$f(x^*) = \min_x f(x) \iff 0 \in \partial f(x^*)$$

while the latter condition is called the subgradient optimality condition.

Note the implication for a convex and differentiable function f:

Proposition (first-order optimality condition). For any convex and differentiable function f and a convex set C, x^* is a solution for the optimization problem,

$$\min_{x} f(x) subject \ tox \in C,$$

if and only if

$$\nabla f(x)^T (y-x) \ge 0, \forall y \in C.$$

Proof. The given optimization problem is equivalent with

$$\min_{x} f(x) + I_C(x)$$

where I_C is an indicator function for the set, C.

The subgradient optimality applied,

$$0 \in (\partial f(x) + I_C(x)) \iff 0 \in \nabla f(x) + N_C(x)$$
$$\iff -\nabla f(x) \in N_C(x)$$
$$\iff -\nabla f(x)^T x \ge -\nabla f(x)^T y, \forall y \in C$$
$$\iff \nabla f(x)^T (y - x) \ge 0, \forall y \in C$$

where N_C is the normal cone of the set C

Example (lasso optimality conditions). Consider the following lasso problem:

$$\min_{\beta} \frac{1}{2} \|y - X\beta\|_{2}^{2} + \lambda \|\beta\|_{1}.$$

The subgradient optimality condition is given as follows:

$$0 \in \partial(\frac{1}{2} \|y - X\beta\|_{2}^{2} + \lambda \|\beta\|_{1}) \iff 0 \in -X^{T}(y - X\beta) + \lambda \partial \|\beta\|_{1}$$
$$\iff X^{T}(y - X\beta) = \lambda v, \text{ for some } v \in \partial \|\beta\|_{1}$$
$$\iff \begin{cases} X_{i}^{T}(y - X\beta) = \lambda \operatorname{sign}(\beta_{i}) \text{ if } \beta_{i} \neq 0, \\ |X_{i}^{T}(y - X\beta)| \leq \lambda \text{ if } \beta_{i} = 0, \end{cases}$$

where

$$[\partial \|\beta\|_1]_i = \begin{cases} \{1\}, \, \beta_i > 0, \\ \{-1\}, \, \beta_i < 0, \\ [-1,1], \, \beta_i = 0. \end{cases}$$

It does not only give a way to check lasso optimality, but also it is helpful in understanding the lasso estimator. Example (soft-thresholding). Consider a simplified lasso problem with X = I:

$$\min_{\beta} \frac{1}{2} \|y - \beta\|_{2}^{2} + \lambda \|\beta\|_{1}.$$

A solution for this problem is given as

$$\beta = S_{\lambda}(y)$$

where S_{λ} is a soft-threshold operator such that

$$[S_{\lambda}(y)]_{i} = \begin{cases} y_{i} - \lambda \text{ if } y_{i} > \lambda, \\ y_{i} + \lambda \text{ if } y_{i} < -\lambda, \\ 0 \text{ otherwise.} \end{cases}$$

Check the subgradient optimality of this solution:

- 1. If $y_i > \lambda$, $\beta_i = y_i \lambda > 0$, and hence $y_i \beta_i = \lambda = \lambda \operatorname{sign}(\beta_i)$,
- 2. Similarly, it satisfies subgradient optimality condition if $y_i < -\lambda$,
- 3. If $|y_i| < \lambda$, $\beta_i = 0$, and hence $|y_i \beta_i| = |y_i| < \lambda$.

Conversely, soft-thresholding can be derived by reverse engineer this argument.

Example (distance to a convex set). For a convex set C,

$$\operatorname{dist}(x,C) = \min_{y \in C} \|y - x\|_2$$

Then,

$$\partial \operatorname{dist}(x, C) = \{ \frac{x - P_C(x)}{\|x - P_C(x)\|_2} \}$$

where $P_C(x)$ is a projection of x onto C. Hence, dist(x, C) is differentiable and this is its gradient.