
10-725/36-725: Convex Optimization Fall 2018

Lecture 6: September 17
Lecturer: Lecturer: Ryan Tibshirani Scribes: Heejong Bong, Wanshan Li, Shamindra Shrotriya

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They
may be distributed outside this class only with the permission of the Instructor.

6.1 Convergence Analysis of Optimization Algorithms

In our previous class we learned the following theorem for f is differentiable with Lipschitz and nonconvex.

Theorem (Gradient Descent with fixed step size). Gradient Descent with fixed step size t ≤ 1
L results satisfies

min
i=0,1,2,...k

‖∇f(x(i))‖2 ≤

√
2(f(x(k))− f(x(0))

t(k + 1)

Thus gradient descent has rate O(1√
k

), or O(1
ε2), even in the nonconvex case for finding stationary points

Proof (Sketch). From the lectures the key steps for the proof are as follows:

1. ∇f Lipschitz with constant L means:

f(y) ≤ f(x) +∇f(x)T (y − x) +
L

2
‖y − x‖22 all x, y

2. Plugging in y = x+ = x− t∇f(x),

f
(
x+
)
≤ f(x)−

(
1− Lt

2

)
t‖∇f(x)‖22

3. Taking 0 < t ≤ 1/L, and rearranging

‖∇f(x)‖22 ≤
2

t

(
f(x)− f

(
x+
))

4. Summing over iterations

k∑
i=0

∥∥∥∇f (x(i))∥∥∥2
2
≤ 2

t

(
f
(
x(0)

)
− f

(
x(k+1)

))
≤ 2

t

(
f
(
x(0)

)
− f?

)

5. Lower bound sum by (k + 1) mini=0,...,k

∥∥∇f (x(i))∥∥2
2

6-1

6-2 Lecture 6: September 17

6.1.1 Anatomy of Convergence Rate Proof

The proof for the previous theorem follows the following general construction (framework):

Step 1. Start with some quadratic upper and lower bound on f(y) and f(x) (current iteration)

• Lipschitz gradient: =⇒ we can upper bound f(y)

• Strong convexity: =⇒ we can lower bound f(y)

Step 2. Establish some ‘sufficient descent’ property of f(x+) (next iteration)

• e.g. in gradient descent with t ≤ 1
L we have f(x+) ≤ f(x)− t

2‖∆f(x)‖22

Step 3. Iterate/ recurse the above process to get a global statement about f(x∗) or x∗

In the non-convex case above we leveraged Step 3 to get a property with a stationary point. Note that not
every stationary point is useful or interesting (e.g. local minima) and stationarity in itself is a pretty weak
property. Most of the time it is sufficient and most cases settle in a local minima.

6.2 Gradient Boosting

6.2.1 Gradient Boosting - Problem Setup

Suppose that we are given responses yi ∈ R and features xi ∈ Rp ∀i ∈ {1, 2, . . . , n} We want to construct a
flexible (nonlinear) model for response based on features. Weighted sum of trees:

ui =

m∑
j=1

βj · Tj(xi) ∀i ∈ {1, 2, . . . , n}

Each tree Tj inputs xi and outputs a predicted response. Typically trees are pretty short.

We have flexibility to pick a suitable loss function L to reflect setting e.g for continuous responses we can
take the squared error loss function L(yi, ui) = (yiui)

2. We then want to ideally solve

min
β

∑
L

yi, M∑
j=1

βj · Tj(xi)


Indexes all trees of a fixed size (e.g., depth = 5), so M is huge. Space is simply too big to optimize!

6.2.2 Gradient Boosting - Procedure

Key idea: Here we essentially do gradient descent on some loss function where we map gradients to vector
of projections by a tree. This essentially forms a big cluster of weighted summed trees.

More specifically we have the following procedure:

First think of optimization as minu f(u), over predicted values u, subject to u coming from trees. Start with
initial model, a single tree u(0) = T0 and then repeat the following:

Lecture 6: September 17 6-3

• Compute negative gradient d at latest prediction u(k−1)

di = −
[
∂L(yi, ui)

∂ui

] ∣∣∣∣∣
ui=u

(k−1)
i

∀i ∈ {1, 2, . . . , n}

• Find a tree Tk that is close to a, i.e., according to

min
trees T

(di − T (xi))
2

This is not hard to (approximately) solve for a single tree

• Compute step size αk, and update our prediction:

u(k) = u(k−1) + αkTk

Note: predictions are weighted sums of trees, as desired

6.3 Subgradients

Key idea: Subgradients are a generalization of gradients. Our focus is mainly non-differentiable convex
functions and subgradients provide a fairly general concept of optimality.

Definition (Subgradient). The subgradient of a convex function f at x ∈ dom(f) is:

g ∈ Rns.t. f(y) ≥ f(x) + gT (y − x) ∀y

6.3.1 Useful facts

1. The subgradient of f always exists, for points that are in the relative interior of dom(f).

2. If f is differentiable at x, then subgradient g = ∇f(x) uniquely.

3. For nonconvex function, the same defnition works, but the subgradient need not exist.

6.3.2 Examples of Subgradients

The following are some useful examples of subgradients.

1. f : R→ R : x 7→ |x|. {
Unique subgradient g = sign(x), for x 6= 0,

g is any element of [−1, 1], for x = 0.

2. f : Rn → R : x 7→ ‖x‖2. {
Unique subgradient g = x/‖x‖2, for x 6= 0,

g is any element of {z : ‖z‖2 ≤ 1}, for x = 0.

6-4 Lecture 6: September 17

3. f : Rn → R : x 7→ ‖x‖1. For 1 ≤ i ≤ n{
Unique subgradient gi = sign(x), for xi 6= 0,

gi is any element of [−1, 1], for xi = 0.

4. f = max{f1, f2}, where f1, f2 : Rn → R are convex and differentiable.
g = ∇f1(x), f1(x) > f2(x),

g = ∇f2(x), f2(x) > f1(x),

g is any point on line segment between ∇f1(x) and ∇f2(x), f1(x) = f2(x).

To see this, notice that when f1(x) > f2(x), f acts like f1 in a neighborhood of x, because convex
function is continuous in the interior of its domain.

6.4 Subdifferentials

Definition (Subdifferential). The subdifferential of a convex function f at x ∈ dom(f) is

∂f(x) = {g ∈ Rn : g is a subgradient of f at x}.

6.4.1 Useful facts

1. The subdifferential is nonempty for convex function f (again, in the relative interior of dom(f)).

2. ∂f(x) is closed and convex, even for nonconvex function f .

3. If f is differentiable at x and ∇f(x) = g, then ∂f(x) = {g}.

4. If ∂f(x) = {g}, then f is differentiable at x and ∇f(x) = g.

Proposition (Connection to convex geometry). Suppose C is a convex set in Rn. Then, for x ∈ C,
∂IC(x) = NC(x), where

IC(x) =

{
0, x ∈ C,
∞, x /∈ C,

and
NC(x) = {g ∈ Rn : g>x ≥ g>y for any y ∈ C}.

Recall that NC(x) is called normal cone of set C at point x.

Proof. By definition, g is the subgradient at x if and onlly if,

IC(y) ≥ IC(x) + g>(y − x), ∀y.

For y /∈ C, IC(y) =∞ and the inequality holds, while for y ∈ C, IC(y) = 0 and the inequality is equivalent to

0 ≥ g>(y − x).

Lecture 6: September 17 6-5

Proposition (Subgradient calculus). Some useful facts of subgradient calculus:

• Scaling: ∂(af) = a · ∂f provided a > 0 (to make af convex).

• Addition: ∂(f1 + f2) = ∂f1 + ∂f2.

• Affine composition: if g(x) = f(Ax+ b), then ∂g(x) = A>∂f(Ax+ b).

• Finite pointwise maximum: f(x) = max1≤i≤n fi(x), then

∂f(x) = conv

 ⋃
i:fi(x)=f(x)

∂fi(x)

 ,

i.e., convex hull of the union of subdifferentials of active functions at x.

• General poinwise maximum: f(x) = maxs∈S fs(x), then

∂f(x) ⊇ Cl{conv

 ⋃
s:fs(x)=f(x)

∂fs(x)

},
where Cl(C) means closure of C, and one should notice that conv

(⋃
s:fs(x)=f(x)

∂fs(x)
)

need not be

closed if S is infinite. Under some regularity conditions on S and fs, e.g., fs is continuous for all s, we
can get equality.

• Norms: f(x) = ‖x‖p, x need not in a finite dimension, let q be such that 1/p+ 1/q = 1, then

‖x‖p = max
z:‖z‖1≤1

z>x.

Hence, ∂f(x) = arg maxz:‖z‖1≤1 z
>x.

6.4.2 Importance of subgradient

• Convex analysis: KKT condition → optimality characterization; monotonicity; relationship to duality.

• Convex optimization: if you can compute subgradient, then you can minimize any convex functions.

6.5 Optimality conditions

Here we note some optimality criteria involving subgradients with a particular focus on convex functions.

Proposition (subgradient optimality condition). For any function f ,

f(x∗) = min
x
f(x) ⇐⇒ 0 ∈ ∂f(x∗)

while the latter condition is called the subgradient optimality condition.

Note the implication for a convex and differentiable function f :

6-6 Lecture 6: September 17

Proposition (first-order optimality condition). For any convex and differentiable function f and a convex
set C, x∗ is a solution for the optimization problem,

min
x
f(x)subject tox ∈ C,

if and only if

∇f(x)T (y − x) ≥ 0,∀y ∈ C.

Proof. The given optimization problem is equivalent with

min
x
f(x) + IC(x)

where IC is an indicator function for the set, C.

The subgradient optimality applied,

0 ∈ (∂f(x) + IC(x)) ⇐⇒ 0 ∈ ∇f(x) +NC(x)

⇐⇒ −∇f(x) ∈ NC(x)

⇐⇒ −∇f(x)Tx ≥ −∇f(x)T y,∀y ∈ C
⇐⇒ ∇f(x)T (y − x) ≥ 0,∀y ∈ C

where NC is the normal cone of the set C

Example (lasso optimality conditions). Consider the following lasso problem:

min
β

1

2
‖y −Xβ‖22 + λ‖β‖1.

The subgradient optimality condition is given as follows:

0 ∈ ∂(
1

2
‖y −Xβ‖22 + λ‖β‖1) ⇐⇒ 0 ∈ −XT (y −Xβ) + λ∂‖β‖1

⇐⇒ XT (y −Xβ) = λv, for some v ∈ ∂‖β‖1

⇐⇒

{
XT
i (y −Xβ) = λ sign(βi) if βi 6= 0,

|XT
i (y −Xβ)| ≤ λ if βi = 0,

where

[∂‖β‖1]i =


{1}, βi > 0,

{−1}, βi < 0,

[−1, 1], βi = 0.

It does not only give a way to check lasso optimality, but also it is helpful in understanding the lasso estimator.

Example (soft-thresholding). Consider a simplified lasso problem with X = I:

min
β

1

2
‖y − β‖22 + λ‖β‖1.

A solution for this problem is given as

β = Sλ(y)

Lecture 6: September 17 6-7

where Sλ is a soft-threshold operator such that

[Sλ(y)]i =


yi − λ if yi > λ,

yi + λ if yi < −λ,
0 otherwise.

Check the subgradient optimality of this solution:

1. If yi > λ, βi = yi − λ > 0, and hence yi − βi = λ = λ sign(βi),

2. Similarly, it satisfies subgradient optimality condition if yi < −λ,

3. If |yi| < λ, βi = 0, and hence |yi − βi| = |yi| < λ.

Conversely, soft-thresholding can be derived by reverse engineer this argument.

Example (distance to a convex set). For a convex set C,

dist(x,C) = min
y∈C
‖y − x‖2.

Then,

∂dist(x,C) = { x− PC(x)

‖x− PC(x)‖2
}

where PC(x) is a projection of x onto C. Hence, dist(x,C) is differentiable and this is its gradient.

	Convergence Analysis of Optimization Algorithms
	Anatomy of Convergence Rate Proof

	Gradient Boosting
	Gradient Boosting - Problem Setup
	Gradient Boosting - Procedure

	Subgradients
	Useful facts
	Examples of Subgradients

	Subdifferentials
	Useful facts
	Importance of subgradient

	Optimality conditions

