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6.1 Convergence Analysis of Optimization Algorithms

In our previous class we learned the following theorem for f is differentiable with Lipschitz and nonconvex.

Theorem (Gradient Descent with fixed step size). Gradient Descent with fixed step size t ≤ 1
L results satisfies

min
i=0,1,2,...k

‖∇f(x(i))‖2 ≤

√
2(f(x(k))− f(x(0))

t(k + 1)

Thus gradient descent has rate O( 1√
k

), or O( 1
ε2 ), even in the nonconvex case for finding stationary points

Proof (Sketch). From the lectures the key steps for the proof are as follows:

1. ∇f Lipschitz with constant L means:

f(y) ≤ f(x) +∇f(x)T (y − x) +
L

2
‖y − x‖22 all x, y

2. Plugging in y = x+ = x− t∇f(x),

f
(
x+
)
≤ f(x)−

(
1− Lt

2

)
t‖∇f(x)‖22

3. Taking 0 < t ≤ 1/L, and rearranging

‖∇f(x)‖22 ≤
2

t

(
f(x)− f

(
x+
))

4. Summing over iterations

k∑
i=0

∥∥∥∇f (x(i))∥∥∥2
2
≤ 2

t

(
f
(
x(0)

)
− f

(
x(k+1)

))
≤ 2

t

(
f
(
x(0)

)
− f?

)

5. Lower bound sum by (k + 1) mini=0,...,k

∥∥∇f (x(i))∥∥2
2
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6.1.1 Anatomy of Convergence Rate Proof

The proof for the previous theorem follows the following general construction (framework):

Step 1. Start with some quadratic upper and lower bound on f(y) and f(x) (current iteration)

• Lipschitz gradient: =⇒ we can upper bound f(y)

• Strong convexity: =⇒ we can lower bound f(y)

Step 2. Establish some ‘sufficient descent’ property of f(x+) (next iteration)

• e.g. in gradient descent with t ≤ 1
L we have f(x+) ≤ f(x)− t

2‖∆f(x)‖22

Step 3. Iterate/ recurse the above process to get a global statement about f(x∗) or x∗

In the non-convex case above we leveraged Step 3 to get a property with a stationary point. Note that not
every stationary point is useful or interesting (e.g. local minima) and stationarity in itself is a pretty weak
property. Most of the time it is sufficient and most cases settle in a local minima.

6.2 Gradient Boosting

6.2.1 Gradient Boosting - Problem Setup

Suppose that we are given responses yi ∈ R and features xi ∈ Rp ∀i ∈ {1, 2, . . . , n} We want to construct a
flexible (nonlinear) model for response based on features. Weighted sum of trees:

ui =

m∑
j=1

βj · Tj(xi) ∀i ∈ {1, 2, . . . , n}

Each tree Tj inputs xi and outputs a predicted response. Typically trees are pretty short.

We have flexibility to pick a suitable loss function L to reflect setting e.g for continuous responses we can
take the squared error loss function L(yi, ui) = (yiui)

2. We then want to ideally solve

min
β

∑
L

yi, M∑
j=1

βj · Tj(xi)


Indexes all trees of a fixed size (e.g., depth = 5), so M is huge. Space is simply too big to optimize!

6.2.2 Gradient Boosting - Procedure

Key idea: Here we essentially do gradient descent on some loss function where we map gradients to vector
of projections by a tree. This essentially forms a big cluster of weighted summed trees.

More specifically we have the following procedure:

First think of optimization as minu f(u), over predicted values u, subject to u coming from trees. Start with
initial model, a single tree u(0) = T0 and then repeat the following:
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• Compute negative gradient d at latest prediction u(k−1)

di = −
[
∂L(yi, ui)

∂ui

] ∣∣∣∣∣
ui=u

(k−1)
i

∀i ∈ {1, 2, . . . , n}

• Find a tree Tk that is close to a, i.e., according to

min
trees T

(di − T (xi))
2

This is not hard to (approximately) solve for a single tree

• Compute step size αk, and update our prediction:

u(k) = u(k−1) + αkTk

Note: predictions are weighted sums of trees, as desired

6.3 Subgradients

Key idea: Subgradients are a generalization of gradients. Our focus is mainly non-differentiable convex
functions and subgradients provide a fairly general concept of optimality.

Definition (Subgradient). The subgradient of a convex function f at x ∈ dom(f) is:

g ∈ Rns.t. f(y) ≥ f(x) + gT (y − x) ∀y

6.3.1 Useful facts

1. The subgradient of f always exists, for points that are in the relative interior of dom(f).

2. If f is differentiable at x, then subgradient g = ∇f(x) uniquely.

3. For nonconvex function, the same defnition works, but the subgradient need not exist.

6.3.2 Examples of Subgradients

The following are some useful examples of subgradients.

1. f : R→ R : x 7→ |x|. {
Unique subgradient g = sign(x), for x 6= 0,

g is any element of [−1, 1], for x = 0.

2. f : Rn → R : x 7→ ‖x‖2. {
Unique subgradient g = x/‖x‖2, for x 6= 0,

g is any element of {z : ‖z‖2 ≤ 1}, for x = 0.
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3. f : Rn → R : x 7→ ‖x‖1. For 1 ≤ i ≤ n{
Unique subgradient gi = sign(x), for xi 6= 0,

gi is any element of [−1, 1], for xi = 0.

4. f = max{f1, f2}, where f1, f2 : Rn → R are convex and differentiable.
g = ∇f1(x), f1(x) > f2(x),

g = ∇f2(x), f2(x) > f1(x),

g is any point on line segment between ∇f1(x) and ∇f2(x), f1(x) = f2(x).

To see this, notice that when f1(x) > f2(x), f acts like f1 in a neighborhood of x, because convex
function is continuous in the interior of its domain.

6.4 Subdifferentials

Definition (Subdifferential). The subdifferential of a convex function f at x ∈ dom(f) is

∂f(x) = {g ∈ Rn : g is a subgradient of f at x}.

6.4.1 Useful facts

1. The subdifferential is nonempty for convex function f (again, in the relative interior of dom(f)).

2. ∂f(x) is closed and convex, even for nonconvex function f .

3. If f is differentiable at x and ∇f(x) = g, then ∂f(x) = {g}.

4. If ∂f(x) = {g}, then f is differentiable at x and ∇f(x) = g.

Proposition (Connection to convex geometry). Suppose C is a convex set in Rn. Then, for x ∈ C,
∂IC(x) = NC(x), where

IC(x) =

{
0, x ∈ C,
∞, x /∈ C,

and
NC(x) = {g ∈ Rn : g>x ≥ g>y for any y ∈ C}.

Recall that NC(x) is called normal cone of set C at point x.

Proof. By definition, g is the subgradient at x if and onlly if,

IC(y) ≥ IC(x) + g>(y − x), ∀y.

For y /∈ C, IC(y) =∞ and the inequality holds, while for y ∈ C, IC(y) = 0 and the inequality is equivalent to

0 ≥ g>(y − x).
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Proposition (Subgradient calculus). Some useful facts of subgradient calculus:

• Scaling: ∂(af) = a · ∂f provided a > 0 (to make af convex).

• Addition: ∂(f1 + f2) = ∂f1 + ∂f2.

• Affine composition: if g(x) = f(Ax+ b), then ∂g(x) = A>∂f(Ax+ b).

• Finite pointwise maximum: f(x) = max1≤i≤n fi(x), then

∂f(x) = conv

 ⋃
i:fi(x)=f(x)

∂fi(x)

 ,

i.e., convex hull of the union of subdifferentials of active functions at x.

• General poinwise maximum: f(x) = maxs∈S fs(x), then

∂f(x) ⊇ Cl{conv

 ⋃
s:fs(x)=f(x)

∂fs(x)

},
where Cl(C) means closure of C, and one should notice that conv

(⋃
s:fs(x)=f(x)

∂fs(x)
)

need not be

closed if S is infinite. Under some regularity conditions on S and fs, e.g., fs is continuous for all s, we
can get equality.

• Norms: f(x) = ‖x‖p, x need not in a finite dimension, let q be such that 1/p+ 1/q = 1, then

‖x‖p = max
z:‖z‖1≤1

z>x.

Hence, ∂f(x) = arg maxz:‖z‖1≤1 z
>x.

6.4.2 Importance of subgradient

• Convex analysis: KKT condition → optimality characterization; monotonicity; relationship to duality.

• Convex optimization: if you can compute subgradient, then you can minimize any convex functions.

6.5 Optimality conditions

Here we note some optimality criteria involving subgradients with a particular focus on convex functions.

Proposition (subgradient optimality condition). For any function f ,

f(x∗) = min
x
f(x) ⇐⇒ 0 ∈ ∂f(x∗)

while the latter condition is called the subgradient optimality condition.

Note the implication for a convex and differentiable function f :
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Proposition (first-order optimality condition). For any convex and differentiable function f and a convex
set C, x∗ is a solution for the optimization problem,

min
x
f(x)subject tox ∈ C,

if and only if

∇f(x)T (y − x) ≥ 0,∀y ∈ C.

Proof. The given optimization problem is equivalent with

min
x
f(x) + IC(x)

where IC is an indicator function for the set, C.

The subgradient optimality applied,

0 ∈ (∂f(x) + IC(x)) ⇐⇒ 0 ∈ ∇f(x) +NC(x)

⇐⇒ −∇f(x) ∈ NC(x)

⇐⇒ −∇f(x)Tx ≥ −∇f(x)T y,∀y ∈ C
⇐⇒ ∇f(x)T (y − x) ≥ 0,∀y ∈ C

where NC is the normal cone of the set C

Example (lasso optimality conditions). Consider the following lasso problem:

min
β

1

2
‖y −Xβ‖22 + λ‖β‖1.

The subgradient optimality condition is given as follows:

0 ∈ ∂(
1

2
‖y −Xβ‖22 + λ‖β‖1) ⇐⇒ 0 ∈ −XT (y −Xβ) + λ∂‖β‖1

⇐⇒ XT (y −Xβ) = λv, for some v ∈ ∂‖β‖1

⇐⇒

{
XT
i (y −Xβ) = λ sign(βi) if βi 6= 0,

|XT
i (y −Xβ)| ≤ λ if βi = 0,

where

[∂‖β‖1]i =


{1}, βi > 0,

{−1}, βi < 0,

[−1, 1], βi = 0.

It does not only give a way to check lasso optimality, but also it is helpful in understanding the lasso estimator.

Example (soft-thresholding). Consider a simplified lasso problem with X = I:

min
β

1

2
‖y − β‖22 + λ‖β‖1.

A solution for this problem is given as

β = Sλ(y)



Lecture 6: September 17 6-7

where Sλ is a soft-threshold operator such that

[Sλ(y)]i =


yi − λ if yi > λ,

yi + λ if yi < −λ,
0 otherwise.

Check the subgradient optimality of this solution:

1. If yi > λ, βi = yi − λ > 0, and hence yi − βi = λ = λ sign(βi),

2. Similarly, it satisfies subgradient optimality condition if yi < −λ,

3. If |yi| < λ, βi = 0, and hence |yi − βi| = |yi| < λ.

Conversely, soft-thresholding can be derived by reverse engineer this argument.

Example (distance to a convex set). For a convex set C,

dist(x,C) = min
y∈C
‖y − x‖2.

Then,

∂dist(x,C) = { x− PC(x)

‖x− PC(x)‖2
}

where PC(x) is a projection of x onto C. Hence, dist(x,C) is differentiable and this is its gradient.
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