
10-725/36-725: Convex Optimization Fall 2018

Lecture 7: September 19
Lecturer: Ryan Tibshirani Scribes: Dhruv Mauria Saxena, Weiran Yao, Yang Yang

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

7.1 Subgradient Concepts Revisited

Subgradients are alternatives to gradients when the function f is non-smooth or non-differentiable. Recall
that for convex and differentiable f :

f(y) ≥ f(x) +∇f(x)T (y − x) for all x, y

The linear approximation always underestimates f . A subgradient of a convex function f at x is any g ∈ Rn
such that:

f(y) ≥ f(x) + gT (y − x) for all x, y

7.2 Subgradient Method

Now consider f convex, having dom(f) = Rn, but not necessarily differentiable. Our objective is to minimize
f . Subgradient method is like gradient descent, but we replace gradients with subgradients, i.e. initialize
x(0), repeat:

x(k) = x(k−1) − tkg(k−1), k = 1, 2, 3, · · ·

where g(k−1) ∈ ∂f(x(k−1)) is any subgradient of f at x(k−1), and ∂f represents the subdifferential of f .

7.2.1 Differences to gradient descent

Gradient descent method requires f to be convex and differentiable. Subgradient method only requires
function f to be convex and the subgradient g(k−1) of f to exist at point x(k−1).

The step size used in gradient descent is chosen to be fixed and small, or by backtracking line search. For
subgradient method, we generally choose fixed step size or diminishing step size, which will be discussed in
the next section. Key differences are that step sizes are not adaptively computed for subgradient method.

Gradient descent, as its name suggests, is a descent method, which means the objective value is expected to
decrease for every iteration with appropriate step size (such as t ≤ L). However, subgradient method is not

necessarily a descent method, so we keep track of best iterate x
(k)
best among x(0), x(1), ..., x(k) so far, i.e.:

f(x
(k)
best) = min

i∈[0,k]
f(x(i))

7-1

7-2 Lecture 7: September 19

7.2.2 Step size choices

Three kinds of step size choices are covered in the lecture for subgradient methods: (1) fixed step sizes; (2)
diminishing step sizes, and (3) Polyak step sizes.

Fixed step sizes tk = t for all k = 1, 2, 3, ...

Diminishing step sizes Choose tk to meet conditions
∑∞
k=1 t

2
k < ∞ and

∑∞
k=1 tk = ∞. These two

inequalities, square summable but not summable, ensure that step sizes diminish to zero, but not too fast.

Polyak step sizes when the optimal value f? is known, take tk = f(x(k−1))−f?

‖g(k−1)‖22
. The step size can be

derived by minimizing the RHS of subgradient proof:

‖x(k) − x?‖22 ≤ ‖x(k−1) − x?‖22 − 2tk(f(x(k−1))− f(x?)) + t2k‖g(k−1)‖22

7.2.3 Convergence analysis

As in Section 7.2, we assume f to be convex, dom(f) = Rn, but also additionally f is G-Lipschitz where
G > 0 is some constant. This means,

|f(x)− f(y)|≤ G‖x− y‖2

We can provide the following theorems concerning asymptotic convergence bounds:

Theorem 7.1 (Convergence for fixed step size) For a fixed step size t, subgradient method satisfies

lim
k→∞

f
(
x
(k)
best

)
≤ f? +

G2t

2

Theorem 7.2 (Convergence for diminishing step size) For diminishing step sizes that satisfy the
conditions from Section 7.2.2, subgradient method satisfies

lim
k→∞

f
(
x
(k)
best

)
= f?

Proof: The proof derives a ‘basic inequality’ that is used for both theorems above.

For a convex, G-Lipschitz function f , a subgradient has bounded norm. That is,

g ∈ ∂f(x) =⇒ ‖g‖2≤ G (7.1)

using f(y) ≥ f(x) + gT (y − x)

and |f(x)− f(y)|≤ G‖x− y‖2

From the definition of a subgradient,

Lecture 7: September 19 7-3

‖x(k) − x?‖22 = ‖x(k−1) − tkg(k−1) − x?‖22

= ‖x(k−1) − x?‖22+ t2k‖g(k−1)‖22︸ ︷︷ ︸
≤t2kG2, using Equation 7.1

−2tk

(
g(k−1)

)T (
x(k−1) − x?

)

≤ ‖x(k−1) − x?‖22+t2kG
2 − 2tk

(
f
(
x(k−1)

)
− f (x?)

)
(7.2)

Where we use the definition of a subgradient in the last term on the right hand side.

f (x?) ≥ f
(
x(k−1)

)
+
(
g(k−1)

)T (
x(k−1) − x?

)
=⇒

(
g(k−1)

)T (
x(k−1) − x?

)
≤ −f

(
x(k−1)

)
+ f (x?)

Iterate over Equation 7.2 for i = 0, · · · , k to get

0 ≤ ‖x(k) − x?‖22︸ ︷︷ ︸
non-negative distance

≤ ‖x(0) − x?‖22︸ ︷︷ ︸
some constant R2

+

k∑
i=1

t2iG
2 − 2

k∑
i=1

ti

(
f
(
x(i−1)

)
− f (x?)

)

=⇒ 0 ≤ R2 +

k∑
i=1

t2iG
2 − 2

k∑
i=1

ti

(
f
(
x(i−1)

)
− f (x?)

)
=⇒ 2

k∑
i=1

ti

(
f
(
x(i−1)

)
− f (x?)

)
≤ R2 +

k∑
i=1

t2iG
2

But each term in the summation on the left hand side

ti

(
f
(
x(i−1)

)
− f (x?)

)
≥ ti

(
f
(
x
(k)
best

)
− f (x?)

)

=⇒ 2

k∑
i=1

ti

(
f
(
x
(k)
best

)
− f (x?)

)
≤ R2 +

k∑
i=1

t2iG
2

=⇒ f
(
x
(k)
best

)
− f (x?) ≤

R2 +
∑k
i=1 t

2
iG

2

2
∑k
i=1 ti

(7.3)

where f
(
x
(k)
best

)
= mini=0,··· ,k f

(
x(i)
)

is the objective value at the best iterate x
(k)
best. Equation 7.3 is the

basic inequality we can use to derive convergence results for different step sizes.

For ti = t, ∀i,

f
(
x
(k)
best

)
− f (x?) ≤ R2 + t2kG2

2tk

as k→∞−−−−−→ G2t

2
(7.4)

For diminishing ti, using the assumptions from Section 7.2.2,

f
(
x
(k)
best

)
− f (x?) ≤

R2 +
∑k
i=1 t

2
iG

2

2
∑k
i=1 ti

as k→∞−−−−−→

R2 +G2

k∑
i=1

t2i︸ ︷︷ ︸
<∞

2

k∑
i=1

ti︸ ︷︷ ︸
→∞

→ 0

7-4 Lecture 7: September 19

This concludes the proof.

Convergence Rate From Equation 7.4, say we want an ε-suboptimal solution, i.e.

f
(
x
(k)
best

)
− f (x?) ≤ R2

2tk
+
tG2

2
≤ ε

We can make each of the terms in the middle equation to be ≤ ε
2 , which would mean their sum is ≤ ε.

tG2

2
=
ε

2
=⇒ t =

ε

G2

R2

2tk
=
ε

2
=⇒ k =

R2

tε
=
R2G2

ε2

This shows that subgradient method has convergence rate O(1/ε2) (cf. convergence rate of O(1/ε) for
gradient descent).

Remark: This derivation for the convergence rate assumes knowledge of f (x?). However, the analysis is
tight, i.e. we get the same rate for an optimal choice of step sizes ti, ∀ i = 1, · · · , k without knowledge of
f (x?).

7.2.3.1 Example: Regularized logistic regression

Given (xi, yi) ∈ Rp × {0, 1} for i = 1, · · · , n, the logistic regression loss is

f(β) =

n∑
i=1

(
− yixTi β + log(1 + exp(xTi β))

)
(7.5)

The loss function is smooth and convex. We have

∇f(β) =

n∑
i=1

(yi − pi(β))xi (7.6)

where pi(β) = exp(xTi β)/(1 + exp(xTi β)), i = 1, · · · , n.

Consider the regularized problem:

min
β
f(β) + λ · P (β) (7.7)

where P (β) is the penalty. If P (β) = ‖β‖22, it is ridge penalty. If P (β) = ‖β‖1, it is lasso penalty.

With ridge penalty, the objective function is smooth and convex. So we can use gradient descent method to
solve the problem.

With lasso penalty, the objective function is nonsmooth, because ‖β‖1 is nonsmooth. Then we use the
subgradient method to solve the problem.

The example of comparing the convergence rate of the gradient descent method and the subgradient method
is shown in Figure 7.1. In the example, n = 1000, p = 20. Step sizes are hand-tuned to be favorable for each
method. From the example we can observe that the subgradient method is much slower in convergence than
the gradient descent method.

Lecture 7: September 19 7-5

Figure 7.1: . Example of the regularized logistic regression. Left: Ridge penalty, gradient descend method
used. Right: Lasso penalty, subgradient method used.

7.2.4 Example: intersection of sets

Suppose we want to find x∗ ∈ C1∩· · ·∩Cm, i.e., a point in the intersection of closed, convex sets C1, · · · , Cm.

We define

fi(x) = dist(x,Ci), i = 1, · · · ,m (7.8)

f(x) = max
i=1,··· ,m

fi(x) (7.9)

where dist(x,Ci) = miny∈Ci
‖y − x‖2, and solve

min
x
f(x) (7.10)

We have that f∗ = 0 ⇐⇒ x∗ ∈ C1 ∩ · · · ∩ Cm. We can check that f(x) is convex.

The gradient of the distance function dist(x,C) is

∇dist(x,C) =
x− PC(x)

‖x− PC(x)‖2
(7.11)

where PC(x) is the projection of x onto C, i.e., PC(x) = arg miny∈C ‖y − x‖2.

Using the subgradient rule, if f(x) = maxi=1,··· ,m fi(x), then

∂f(x) = conv

 ⋃
i:fi(x)=f(x)

∂fi(x)

 (7.12)

So if fi(x) = f(x) and gi ∈ ∂fi(x), then gi ∈ ∂f(x).

7-6 Lecture 7: September 19

Therefore, if Ci is the farthest set from x, i.e., fi(x) = f(x) and

gi = ∇fi(x) =
x− PCi

(x)

‖x− PCi
(x)‖2

(7.13)

then we have gi ∈ ∂f(x).

We apply the subgradient method with Polyak size tk = f(x(k−1))−f?

‖g(k−1)‖22
= f(x(k−1)). We have that the optimal

value f? = 0 and ‖g(k−1)‖22 = 1.

At iteration k, suppose Ci is farthest from x(k−1). Then we have

f(x(k−1)) = fi(x
(k−1)) = ‖x(k−1) − PCi

(x(k−1))‖2

We perform the update

x(k) = x(k−1) − tkg(k−1)

= x(k−1) − f(x(k−1))
x(k−1) − PCi(x

(k−1))

‖x(k−1) − PCi
(x(k−1))‖2

= x(k−1) −
(
x(k−1) − PCi(x

(k−1))
)

= PCi
(x(k−1)) (7.14)

For finding the intersection of two sets, this is the famous alternating projections algorithm [1]. An example
of the illustration of this algorithm is shown in Figure 7.2.

Figure 7.2: Illustration of the alternating projections algorithm (from Boyd’s lecture notes).

7.2.5 Projected subgradient method

We can use the projected subgradient method to optimize a convex function f over a convex set C,

min
x

f(x) subject to x ∈ C (7.15)

Lecture 7: September 19 7-7

The projected subgradient method is similar to the usual subgradient method, except that we project onto
C at each iteration:

x(k) = PC(x(k−1) − tk · g(k−1)), k = 1, 2, 3, · · · (7.16)

Assuming we can perform this projection, we have the same convergence guarantees as the usual subgradient
method, with the same step size choices.

There are many types of sets C that are easy to project onto, e.g.,

• Affine images: {Ax+ b : x ∈ Rn}

• Solution set of linear system: {x : Ax = b}

• Nonnegative orthant: Rn+ = {x : x ≥ 0}

• Some norm balls: {x : ‖x‖p ≤ 1} for p = 1, 2,∞

• Some simple polyhedra and simple cones

Although it is easy to write down seemingly simple set C, finding projection onto C can be very hard. For
example, it is generally hard to project onto arbitrary polyhedron C = {x : Ax ≤ b}.

Similarly, projected gradient descent method also works, which will be introduced in the next lecture.

7.2.6 Improving on the subgradient method

The upside of the subgradient method is that it has broad applicability. The downside is that the convergence
rate O(1/ε2) is slow over the problem class of convex, Lipschitz functions. We will see if we can improve the
convergence rate.

Nonsmooth first-order methods are the iterative methods that update x(k) in the following way:

x(0) + span{g(0), g(1), · · · , g(k−1)} (7.17)

where subgradients g(0), g(1), · · · , g(k−1) come from weak oracle. Weak oracle means that we are given the
subgradient and do not have choices of subgradients. In practice it may be difficult to compute all the
subgradients.

Theorem 7.3 (Nesterov) For any k ≤ n − 1 and starting point x(0), there is a function in the problem
class such that any nonsmooth first-order method satisfies

f(x(k))− f∗ ≥ RG

2(1 +
√
k + 1)

(7.18)

where R, G are defined in section 7.2.3. From Nesterov’s theorem we can find that f(x(k)) − f∗ has a
lower bound, which gives the convergence rate O(1/ε2). In summary, we cannot do better than the O(1/ε2)
convergence rate for the subgradient method unless we go beyond nonsmooth first-order methods.

Therefore, instead of trying to improve across the broad class of subgradient method, we will focus on
minimizing composite functions of the form

f(x) = g(x) + h(x) (7.19)

7-8 Lecture 7: September 19

where g is convex and differentiable, h is convex and nonsmooth but of simple form. For example, the
objective function with the lasso penalty in the regularized logistic regression problem in section 7.2.3.1 is a
composite function of this form.

For a lot of problems (i.e., functions h), we can recover the O(1/ε) convergence rate of the gradient descent
method with a simple algorithm, which has important practical consequences.

References

[1] von Neumann, “Functional operators, volume II: The geometry of orthogonal spaces”, 1950.

