10-725/36-725: Convex Optimization Fall 2018

Lecture 8: September 24

Lecturer: Lecturer: Ryan Tibshirani Scribes: Scribes: Allie Chang

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

8.1 Proximal Gradient Descent

Suppose f(z) is decomposable:

f(@) = g(x) + h(z) (8.1)

Where g is convex, differentiable, dom(g) = R™ and h is convex, but not necessary differentiable. When h is
differentiable we can simply compute gradient and do gradient descent. We can do quadratic approximation
to

vt = argmin. f(z) + 77 (@) (2~ 2) + ||z ~ ol (2)

Where t represents the step size and the weight for quadratic term. If we apply this quadratic approximation
to g and keep h the same, we get:

1
xt = argminzﬂﬂz —(z—tvy g(;zc))||§ + h(z) (8.3)

The idea behind this is to stay close to gradient update for g and also make h small. This function is defined
as proximal mapping. Rewrite as follows:

1
proz(x) = argminz2—t||x — 2|2 + h(x) (8.4)

This function has unique solution because the square term is strictly convex and h(x) is convex. So proximal
gradient descent is just repeat following steps:

2 ® = prozy, (2% — t, 7 g(z* D)), k= 1,2,3, ... (8.5)

Let G¢(x) = w_pmmt(‘z_tvg(z)) be the generalized gradient, we can rewrite above equation in familiar, gradient
descent way:

e® =g*k=D 1, Gy (aFD) (8.6)

For many h (ex: L; norm)the proz;(.) has closed-form solution. Besides, proz:(.) doesn’t depend on g.We
tend to use this method when h is cheap. ISTA is the problem of using proximal gradient descent to solve
lasso. Please refer to the slides for matrix completion example.

8-1

8-2 Lecture 8: September 24

8.2 Backtracking Line Search

We can use backtracking to select step size for proximal gradient descent. It’s similar to gradient descent,
just replacing the gradient term with generalized gradient G;. Choose 0 < 8 < 1, for each iteration, while

9z = 1Gy(2)) > g(z) =t v g(2)" Ge() + %IIGt(w)Ilg (8.7)

shrink ¢ = ft. Otherwise do proximal gradient update.

8.3 Convergence Analysis

Proximal gradient descent with fixed step size ¢t < % satisfies

oo 2@ — 23

Fa®) - < (8:8)

Where t = /L when doing backtracking. So proximal gradient descent has convergence rate O(1/k) or
O(1/€), which is the same as gradient descent. But we need to consider prox cost too.

8.4 Special cases

Proximal gradient descent is also called composite gradient descent or ”generalized” gradient descent. It’s
call ”generalized” because:

e h=0: prox;(z) = x, same as gradient descent
e h = Io: projected gradient descent

e g =0 : proximal minimization algorithm

8.4.1 Projected gradient descent

We can show that when h is I, this becomes projected gradient descent:

1 .
() = argmmz2—t||x - zH% + Io(2) = argmingecl|lx — z||§ = Po(x) (8.9)

So after each update, it projects the solution back to set C for further updates. Notice that the distances
between projections is no bigger than the distances between original values. No new convergence analysis
needed.

ot = Po(z —t v g(z)) (8.10)

Lecture 8: September 24 8-3

8.4.2 Proximal minimization algorithm

When g = 0, gradient of g is also zero, so the update is just

1
rt = argminz2—t||x —2||2 + h(z) (8.11)

Sounds great, but can only used when we know the prox form of h.

In practice, if we cannot evaluate proxr;, we can consider to approximate it if we know how to control the
error.

8.5 Acceleration

Acceleration can improve the convergence rate to O(1/1/€). Nesterov published a series of paper for accel-
eration methods. Choose initial point (%) = 2(=1) repeat:

k—2
T e (2*=D) — g(h=2)) (8.12)
2™ = prowy, (v -t v g(v)) (8.13)

It pushed the update using momentum from previous iterations. If A = 0 it is accelerated gradient method.
The momentum weight start’s from zero and increases as k grows, approaching to 1. As we get closer to
optimality, the gradient is expected to be smaller, so does the update, by using larger momentum weights
with large k, it keeps the optimization going forward without slowing down.

