
Homework 1

Convex Optimization 10-725/36-725

Due Thursday January 29 at 4:00pm
submitted to Mallory Deptola in GHC 8001

1 Relaxing equality constraints

(a) This is Boyd & Vandenberghe’s Exercise 4.6, copied here for convenience. Consider an optimiza-
tion problem

min f0(x)

subject to fi(x) ≤ 0, i = 1, . . .m

h(x) = 0,

(1)

where f0, . . . fm, h are all convex with domain Rn. Unless h is affine this is not a convex optimization
problem. Consider the related problem

min f0(x)

subject to fi(x) ≤ 0, i = 1, . . .m

h(x) ≤ 0,

(2)

where the convex equality constraint has been relaxed to a convex inequality. This problem is, of
course, convex.

Now suppose we can guarantee that at any optimal solution x? of the convex problem (2), we
have h(x?) = 0, i.e., the inequality h(x) ≤ 0 is always active at the solution. Then we can solve the
nonconvex problem (1) by solving the convex problem (2).

Show that this is the case if there is an index j ∈ {1, . . . n} such that

• f0 is increasing in xj , and

• f1, . . . fm are nondecreasing in xj , and

• h is decreasing in xj .

(b) Apply this logic to the maximum utility problem from Lecture 3 to argue that the equality
constraint there can be relaxed to an inequality constraint, and this will still deliver the proper
solutions. (Note: the maximum utility problem is also described in Boyd & Vandenberghe’s Exercise
4.58, but they use slightly different notation.)

2 Partial optimization using `2 penalties

Consider the problem

min
β, σ≥0

f(β) +
λ

2

n∑
i=1

g(βi, σi), (3)
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for some convex f with domain Rn, λ ≥ 0, and

g(x, y) =


x2/y + y if y > 0

0 if x = 0, y = 0

∞ else

.

In other words, the problem (3) is really just the weighted `2 penalized problem

min
β, σ≥0

f(β) +
λ

2

n∑
i=1

(β2
i

σi
+ σi

)
,

but being careful to treat the ith term in the sum as zero when βi = σi = 0.

(a) Prove that g is convex. Hence argue that (3) is a convex problem. Note that this means we can
perform partial optimization in (3) and expect it to return another convex problem.

(Hint: for convexity of g, use the second-order characterization when y > 0, and the definition of
convexity when y = 0.)

(b) Argue that miny≥0 g(x, y) = 2|x|.

(c) Argue that minimizing over σ ≥ 0 in (3) gives the `1 penalized problem

min
β

f(β) + λ‖β‖1.

3 Lipschitz gradients and strong convexity

Let f be twice differentiable.

(a) Show that the following statements are equivalent, for convex f :

• ∇f is Lipschitz with constant L;

• ∇2f(x) � LI for all x;

• f(y) ≤ f(x) +∇f(x)T (y − x) + L
2 ‖y − x‖

2
2 for all x, y.

(b) Show that the following statements are equivalent, for convex f :

• f is strongly convex with constant m;

• ‖∇f(x)−∇f(y)‖2 ≥ m‖x− y‖2 for all x, y;

• ∇2f(x) � mI for all x;

• f(y) ≥ f(x) +∇f(x)T (y − x) + m
2 ‖y − x‖

2
2 for all x, y.
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4 Solving optimization problems with CVX

CVX is a fantastic Matlab package for disciplined convex programming. It’s rarely the fastest tool
for the job, but it’s widely applicable, and so it’s a great tool to be comfortable with.

(a) For Matlab users, install CVX from here: http://cvxr.com/cvx/, and read the user manual to
get an idea of how to setup and solve optimization problems. For R users, you can call CVX from R.
Use this package to so: http://faculty.bscb.cornell.edu/~bien/cvxfromr.html. (If you don’t
want to use Matlab or R, then this question will be more difficult, but you can try, e.g., using Julia.
Find the Convex.jl package here: https://github.com/JuliaOpt/Convex.jl. This has similar, but not
exactly the same syntax, as CVX).

Make sure that you can solve the least squares problem minβ ‖y−Xβ‖22 for a vector y and matrix
X, and check answers by comparing with the analytic least squares solution.

(b) Now download the following zip file from the course website: hw1-q4.zip. It contains starter
code and data files meant for Matlab or for R, so use them according to your preferred programming
language.

The file TestSVM.m / TestSVM.R reads in the data file SVM data.mat / SVM data.RData, and
contains a code outline for implementing the primal and dual soft-margin linear SVM, plotting the
separating hyperplanes, and plotting the curve of misclassification rate against the tuning parameter
C. The formulation for the primal SVM is given in slide 8 of Lecture 3, which we copy here:

minimize
β∈Rp,β0∈R,ξ∈Rn

1

2
‖β‖2 + C

∑
ξi

subject to 0 ≤ ξi ≥ 0, for i = 1, ..., n

yi(x
T
i β + β0) ≥ 1− ξi, for i = 1, ..., n.

Here is a second, seemingly different problem, dual SVM:

maximize
α∈Rn

− 1

2

n∑
i=1

n∑
j=1

αiαjyiyj〈xi, xj〉+ 1Tα

subject to 0 ≤ α ≤ C, yTα = 0.

We’ll learn later that this is equivalent in a precise sense to the first problem (primal SVM). You
will see in this problem that they produce the same answer.

Fill in the CVX code needed to solve the SVM problems, and do the following:

1. Compare the optimal objective function values of the primal and dual problem for the last
tuning parameter value C in the list Clist. You may either read them off the CVX log, or
calculate them out directly.

2. Compare the the primal solution β and the resconstructed dual solution β̃ = XT (α� y), based
on the dual solution α. (Here a� b denotes the elementwise product between vectors a and b).

3. Plot the separating hyperplane:
βTx+ β0 = 0.

Note that x is 2D, and this equation describes a line on the 2D plane.

4. Plot the misclassification rate on the provided test data as a function of C varying over the
provided list Clist.
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The file TestLasso.m / TestLasso.R reads the data file LASSO data.mat / LASSO data.RData,
and contains a code outline for solving the lasso regression problem:

minimize
β∈Rp

1

2
‖y −Xβ‖22 + λ‖β‖1,

Fill in the CVX code needed to solve the lasso problem, and collect the resulting solutions for each
tuning parameter value in the provided list lambdas, into the columns of a matrix B. Then:

1. Plot the first 20 elements of each row of B versus the first 20 values of λ (so that we have one
line for each variable, on the same figure). This is how we illustrate the solution path of lasso
usually.

2. Calculate the mean square error of the solution β̂(λ) and the ground truth β (given in the
.mat and .RData file) for each value of λ. Plot the MSE curve. Note that MSE is calculated
as 1

p‖β̂(λ)− β‖22, where p is the number of variables (columns of X).

Your solution to this problem should include the request plots and a short writeup that may
include short code snippets, if you find them useful to share. Then append the full code at the end
of the homework document.

(c) Using CVX is usually easy, but sometimes it can get tricky. Each of the following CVX code
fragments describes a convex constraint on the scalar variables x, y, and z, but violates the CVX
rule set. So if you code these snippets as is, CVX will throw an error.

Briefly explain why each snippet is invalid. Then rewrite each one in an equivalent form that
conforms to the CVX rule set (and also explain why your reformulation is equivalent to the original
statement).

Hint: Read the CVX documentation carefully. You may need to introduce additional variables,
or use linear matrix inequalities. Note: this question is not really about learning the CVX lingo; it’s
about developing a better understanding of the various composition rules for convex functions.

1. norm([x,y,z],2)^2 <= 1

2. norm( [x + 2*y, x-y] ) == 0

3. square( square ( 4x - y )) <= x-y

4. 1/x + 2/y <= 5; x>=0; y>=0

5. sqrt( x^2 + 1 ) <= 3*x + y

6. (x+z)*y >= 1; x+z >= 0; y >= 0

7. ( x + y )^2 / sqrt( y ) <= x - y + 5

8. [2*x 2*y -z; 2*y -x+2*z x; -z x 3*z-x^2] == semidefinite(3)

(Hint: introduce a dummy variable so the constraint remains an LMI constraint. Justify that
the reformulation is the same.)
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