
Homework 2

Convex Optimization 10-725/36-725

Due Tuesday February 17 at 4:00pm
submitted to Mallory Deptola in GHC 8001

(make sure to submit each problem separately)

1 Gradient Descent and Strong Convexity [Mattia]

We proved in class that for a convex differentiable function f : Rn → R with Lipschitz gradient, the
convergence rate for gradient descent is O(1/k) where k is the number of iterations. More precisely,
we proved that

f(x(k))− f∗ ≤ ‖x
(0) − x∗‖22

2tk

where 0 < t < 1/L is a fixed step size, L is the Lipschitz constant of the gradient of f , x(0) is
the starting point, x∗ ∈ arg minx∈Rn

f(x), f∗ = f(x∗), and k is the number of iterations. We
also mentioned that if f is also strongly convex – i.e. there exists some m > 0 such that g(x) =
f(x) − m

2 ‖x‖
2
2 is still a convex function – then the rate of convergence for gradient ascent is O(ck)

for some c ∈ (0, 1) as soon as the step size satisfies t ≤ 2/(m + L). In this exercise you will prove
this result.

(a) Throughout this exercise the step size t is assumed to be a fixed number (across the gradient
descent iterations) and 0 < t ≤ 2/(m+ L). Start by showing that

‖x(k) − x∗‖22 ≤
(

1− 2tmL

m+ L

)k

‖x(0) − x∗‖22.

Hint 1: use the gradient descent update rule to write an expression for ‖x(k+1) − x∗‖22 and apply
the following Theorem.

Theorem 1. Let f : Rn → R be a strongly convex function with Lipschitz gradient. Let L and m be
respectively the Lipschitz constant of the gradient of f and the strong convexity constant of f . Then,
for any x, y ∈ Rn,

〈∇f(x)−∇f(y), x− y〉 ≥ mL

m+ L
‖x− y‖22 +

1

m+ L
‖∇f(x)−∇f(y)‖22.

Hint 2: remember that ∇f(x∗) = 0.

(b) Use the result of part (a) to prove that

f(x(k))− f∗ ≤ L

2

(
1− 2tmL

m+ L

)k

‖x(0) − x∗‖22.
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Hint 3: if f : Rn → R is a convex differentiable function with Lipschitz gradient and Lipschitz
constant L, then for any x, y ∈ Rn

0 ≤ f(y)− f(x)− 〈∇f(x), y − x〉 ≤ L

2
‖x− y‖22.

Hint 4: remember Hint 2! Also, you may find the following characterization of a convex differen-
tiable function useful: a differentiable function f : Rn → R is convex if and only if, for any x, y ∈ Rn,
〈∇f(x)−∇f(y), x− y〉 ≥ 0.

(c) Verify that 0 <
(

1− 2tmL
m+L

)
< 1 for 0 < t ≤ 2/(m+ L). In particular, show that

min
0<t≤2/(m+L)

(
1− 2tmL

m+ L

)
=

(
Q− 1

Q+ 1

)2

= c(Q)

where Q = L/m is the condition number of f .

(d) Compute limQ→∞ c(Q). Based on the limit that you just computed, how does the condition
number affect the rate of convergence of part (b)?

2 Subgradients and Prox Operators [Yu-Xiang]

(a) We learned subgradients in class as generalization of gradients. For a function, the subdiffer-
ential at a point x ∈ dom(f) (denoted by ∂f(x)) is the set that collects all subgradients at x.
Characterize the subdifferential of the following functions.

i. Finite pointwise maximum: f(x) = maxi=1,...,m gi(x), where g1, . . . gm are convex. State
the solution as learned in lecture, and then prove the “⊇” direction of the subdifferential
characterization; the “⊆ ” direction is left as a bonus.

ii. Nuclear norm (or trace norm): f(X) = ‖X‖tr :=
∑r

i=1 σi(X), where X ∈ Rm×n, rank r,
and σi(X), i = 1, . . . r are its singular values. Recall that we claimed in class that

∂‖X‖tr = {UV T +W : ‖W‖op ≤ 1, UTW = 0, WV = 0},

where X = UΣV T is the singular value decomposition of X, and ‖W‖op = σ1(X) is the
operator norm (largest singular value) of X. Prove “⊇” in the above equality; the other
direction “⊆” is left as a bonus.

iii. Two nonconvex examples: f(x) = sin(x) and f(x) = x3.

(b) Assume that dom(f) = Rn for simplicity. Prove that g ∈ ∂f(x) iff the vector (g,−1) ∈ Rn+1

defines a supporting hyperplane to epi(f) = {(x, z) ∈ Rn+1 : f(x) ≤ z} at the point x. (Note:
by “defines” here, we mean that (g,−1) is the normal vector to the supporting hyperplane.)

(c) In proximal gradient descent, every iteration applies what is called a proximal map (or prox
operator). Given a function f , its proximal map is defined, for t ≥ 0, as

proxf,t(y) = argmin
x

1

2
‖y − x‖22 + tf(x).

For instance, when f(x) = IC(x), the proximal map is the Euclidean projection onto the set
C. Find the proximal map proxf,t(y) for the following functions.

i. Quadratic function: f(x) = 1
2x

TAx+ bTx+ c with A � 0.
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ii. Logarithmic barrier: f(x) = −
∑n

i=1 log xi.

iii. `0 (pseudo-)norm: f(x) = ‖x‖0 =
∑n

i=1 1{xi 6= 0}.

Hint: x is an optimal solution to a (possibly nonconvex) optimization problem minx f(x) if
and only if 0 ∈ ∂f(x). Also if `(x) is differentiable and f(x) is not, you can use the identity:

∂(`(x) + f(x)) = ∇`(x) + ∂f(x) = {g +∇`(x) | g ∈ ∂f(x)}.

(d) Is the proximal map uniquely defined when f(x) is convex? How about when f(x) is noncon-
vex? Prove or disprove by constructing a counterexample.

3 ISTA and FISTA for LASSO [Junier]

As covered in class, `1 regularization is an important and widely used tool for achieving sparse
solutions to optimization problems. Below we shall use `1 regularization in the LASSO to find
sparse solutions to a least squares regression problem. Recall that the LASSO optimizes:

min
w∈Rp

1

2
‖y −Xw‖22 + λ‖w‖1, (1)

where y ∈ Rn is a vector of responses, X ∈ Rn×p is a matrix of covariates, and λ ∈ R++ is a penalty
parameter.

(a) First we shall code Iterative Shrinkage-Thresholding Algorithm (ISTA), which uses proximal
gradient descent to optimize the LASSO. Please write a function with the following interface:

ws = ista(X, y, lambda, w0, iters);

That is, the function ista should take arguments of the covariate matrix X, response vector
y, and λ penalty parameter, as well as w0, the vector to begin optimizing from, and iters,
the number of iterations to run ISTA for. ista should return a p×iters matrix of the values
of the weight vector w through the iterations; e.g., in MATLAB notation, ws(:,10) should
contain the value of w after 10 iterations of ISTA. Make sure to implement back-tracking for
step sizes in your function, with β = .9 and t0 = 1 (see slide 11 of http://www.stat.cmu.
edu/~ryantibs/convexopt/lectures/08-prox-grad.pdf).

(b) Next, we will code Fast Iterative Shrinkage-Thresholding Algorithm (FISTA), which uses ac-
celerated proximal gradient descent to optimize the LASSO. Write your function implementing
FISTA as:

ws = fista(X, y, lambda, w0, iters);

The arguments and outputs are as in (a). As before, be sure to implement back-tracking for
step sizes in your function with β = .9 and t0 = 1 (see slide 26 of http://www.stat.cmu.edu/

~ryantibs/convexopt/lectures/08-prox-grad.pdf).

(c) We compare the performance of ista and fista. On the course website, you will find the
data files homework2 q3 data.mat and homework2 q3 data.RData. They contain following
variables:

– lambda;

– Xs, a 100× 500× 100 matrix (this is n× p× trials);
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– ys, a 100× 100 matrix;

– w stars, a 500× 100 vector.

Note that in MATLAB notation, for trial t, Xs(:,:,t) is the predictor matrix, ys(:,t) is the
response vector, and w stars(:,t) is the corresponding optimal weight vector. The variable
lambda contains the penalization value to use in all optimizations.

For each t between 1 and 100, solve the corresponding LASSO problem with ISTA and FISTA,
both initialized at 0. Record the difference in achieved versus optimal criterion value across
1000 iterations. Then produce a figure that draws all of these curves on the same plot. Your
figure should look something like (but necessarily exactly like) Figure 1 below.
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Figure 1: Note the log scale on the y-axis, and and the bold mean curve (over trials) of objective
differences for ISTA and FISTA.

(e) Simply describe (do not implement): what would you have to change in your code if we asked
you to solve an `1-penalized logistic regression problem, instead of the `1-penalized Gaussian
regression in (1)?

4 Warm Starts and Stagewise Regression [Nicole]

In general, it is good practice to be able to generate your own synthetic data sets so that you can
debug, compare, and evaluate your implementations of various algorithms.

For this problem, generate the following synthetic data set, with 100 samples and 500 features.
The true weight vector is 10 1s followed by 490 0s. Generate the predictor matrix X ∈ R100×500 to
have with i.i.d. N (0, 1) entries. Then let the repsonse vector be

y = Xwtrue + ε,

where ε ∈ R100 has i.i.d. entries also drawn from a standard Gaussian. Using the same weight vector,
generate another predictor matrix and response vector, in the same manner as above, to form your
hold-out set.
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(a) In the previous question you solved the LASSO problem for a fixed value of the hyperparameter
λ. Since λ governs the degree of sparsity in the solution, in general we will want to find an
appropriate value of λ for any given problem. Run FISTA for 100 different values of λ, log
spaced between 104 and 100.015, in that order (e.g. use MATLAB’s logspace(4, 0.015, 100)). For
each λ, use the solved w from the previous λ as your starting value, as opposed to starting from
0 each time.

Modify your code from the last question to include a stopping rule for FISTA. Stop when the
absolute relative difference in criterion values across iterations (current criterion value minus
previous, divided by previous) is less than 10−4. At each λ, you will run FISTA until this is
met, or for a maximum of 500 iterations.

In your writeup, include the following four plots:

i MSE on the held-out set vs log(λ);

ii MSE on the held-out set vs ||w||1;

iii a plot of the values of w vs ||w||1; one line per component;

iv the number of iterations to complete vs log(λ).

Which λ would you choose? To what value of ||w||1 does this correspond?

(b) In part (a) you used “warm starts,” that is, you started with a large value for λ and then used
that solution to guide the next. In terms of the types of convergence rates we have covered in
class, why might this be a good idea, i.e., why would it make solving the problem for subsequent
values of λ faster? And what is this assuming?

(c) Implement forward stagewise regression to solve this problem. For this, it is convenient to
reformulate the LASSO problem in bound form:

min
w∈Rp

1

2
||y −Xw||22 s.t. ||w||1 ≤ s, (2)

where now s ≥ 0 is the tuning parameter. As you probably already know, problems (1) and
(2) are equivalent in the sense that, for each λ in (1) there is an s in (2) that yields the same
solution, and vice versa. (We will learn this more precisely later in the course when we study
duality.)

In stagewise regression, we start with s = 0 and w(0) = 0. Then, writing X1, . . . Xp ∈ Rn for
the columns of X, we repeat the following steps for k = 1, 2, 3, . . .:

w(k) = w(k−1) + ε · sign
(
XT

i (y −Xw(k−1))
)
· ei,

where i = argmax
j=1,...p

|XT
j (y −Xw(k−1))|.

In the above, ei is the ith standard basis vector, and ε > 0 is a small fixed constant.

Run stagewise regression on the same data set as in part (a), and record the estimates w(k)

across steps k of the algorithm. (Note: the interpretation of an iteration k here is different
than in ISTA or FISTA, because each iteration produces for us a new estimate of the regression
coefficients.) Record the value of ||w(k)||1 across iterations k, and run for 1500 iterations. Use
the step size ε = 10−2.

In your writeup, produce plots ii and iii as in part (a) but for stagewise regression. What do
you feel are the key differences in the performance of each algorithm? To what do you attribute
these differences?

Did you settle on a different value of ||w||1 for stagewise? What is the corresponding MSE on
the held-out set, and how does it compare to the error of the best LASSO solution?
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(d) Why did we use a held-out portion of our data set (as opposed to training data) to compute the
MSE when we were trying to gauge performance for various values of λ (values of ‖w‖1)?

Bonus Problem 1: Strong Convexity Key Fact [Mattia]

A key technical device used in Question 1 was Theorem 1. Prove it!

Bonus Problem 2: Complete Characterizations of Subdiffer-
entials [Yu-Xiang]

Prove the reverse directions for the subdifferential characterizations in Question 2 part (a) subpart
i., and Question 2 part (b).

That is, for f(x) = maxi=1...m gi(x), where g1, . . . gm are convex, prove that

∂f(x) ⊆ conv

( ⋃
i:gi(x)=f(x)

∂gi(x)

)
.

You may assume that each gi has full domain, and is continuous. Hint: start with the simple case
of just two functions, g1 and g2.

Also, prove that for f(x) = ‖X‖tr,

∂‖X‖tr ⊆ {UV T +W : ‖W‖op ≤ 1, UTW = 0, WV = 0}.
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