
Homework 4

Convex Optimization 10-725/36-725

Due Thursday March 19 at 4:00pm
submitted to Mallory Deptola in GHC 8001

(make sure to submit each problem separately)

1 Convergence Analysis of Univariate Newton Method [Nicole]

Under certain restrictions on the function being minimized, we can provide a quadratic convergence
guarantee for pure Newton’s method (i.e., without backtracking).

Assume that we are minimizing a triply smooth function f : [a, b]→ R, and that the following is
true for all x ∈ [a, b]:

|f ′′(x)| > C1 > 0

|f ′′′(x)| < C2

Show that these conditions are sufficient for proving a quadratic convergence rate. I.e. show that:

|x(k+1) − x?| ≤ C2

2C1
|x(k) − x?|2,

where x? ∈ (a, b) is the global minimizer of f , and x(k) ∈ (a, b) is the estimate after k Newton
iterations.

(Hint: you may want to Taylor expand.)

2 Iteratively Reweighted Least Squares [Veeru]

How to fit generalized linear models (GLMs)? Given samples (xi, yi) ∈ Rp × R, consider an expo-
nential family model, wherein yi|xi follows a density

f(yi; θi) = exp
(yiθi − b(θi)

a(φ)
+ c(yi, φ)

)
.

Here θi is called the natural parameter, φ is called the dispersion parameter, and a, b, c are functions.
In a generalized linear model, we assume that θi = xTi β for each i, a linear function of the predictor
variables.

(a) Assuming independent samples, and φ known, write down the (conditional) likelihood as a
function of β. Prove that maximizing the likelihood over β is equivalent to the following problem

min
β∈Rp

n∑
i=1

(
− yixTi β + b(xTi β)

)
. (1)

What is a sufficient condition for this to be a convex problem? Be as general as possible.
(b) Write down the Newton’s method for this problem assuming that the second derivative of b

exists and is positive everywhere. Assume pure Newton’s method, so the step size is always t = 1.
Show that it takes the form of iteratively reweighted least squares.

1



(c) Assume that we further have a constraint on the absolute value of θi and we want to solve
the following problem instead:

min
β∈Rp

n∑
i=1

(
− yixTi β + b(xTi β)

)
subject to |xTi β| ≤ ui, i = 1, . . . n

where ui are fixed positive numbers. Write down the log barrier function, and write down the steps
of the barrier method here. Note that we require backtracking here, i.e., the step-size is no longer
1. Does this still take the form of some kind of least squares?

3 Poisson Interior Point Method [Mattia & Junier]

In this exercise you will fit a Poisson regression model with linear constraints on the mean. Remember
that in a Poisson regression model, we are modeling the mean of the Poisson distributed yi|xi as

µi = ex
T
i β . One only needs to set b(w) = ew (so that b(xTi β) = ex

T
i β) in equation (1) of Question 2.

You will model the expected number of customers shopping in a store as a function of the following
covariates: the time of the day, the weather on that day and a variable indicating whether or not
the store was offering a special deal.

The poisLogBarrier data files contains a dataset where the response variable (count) corre-
sponds to the number of people that are shopping in the store at a given time of the day (from 8 AM
to 8 PM). In the dataset, time is recorded using the 24 hour format in 13 dummy variables (one for
each hour from 8AM to 8PM). Two additional covariates are available: the binary variable weather

(1: sunny, 0: not sunny) and the variable offer (1: the store offered a special discount/deal on the
day of the observation, 0: there were no special deals on the day of the observation). The covariates
are stored in the matrix X. You are asked to fit a Poisson regression model on these data with

logµi = xTi β = βweather ∗ weatheri + βoffer ∗ offeri +

20∑
t=8

βt ∗ 1(ti = t),

where 1(ti = t) = 1 if the time ti corresponding to the i−th observation is equal to t and 1(ti = t) = 0
otherwise. The vector of coefficients β is thus a vector of length 15 (1 coefficients for weather, 1
coefficients for offer, and 1 coefficient for each hour of the day between 8 AM and 8 PM).

Based on her long experience in the store, the store manager has a belief on how the expected
count of customers varies as a function of time during the day. The belief of the store manager can
be expressed in terms of the band

logµi ∈ [li, ui],

where the bounds li and ui are provided as vectors in the poisLogBarrier dataset (belief.lower
and belief.upper, respectively).

Fit the Poisson regression model under the above linear (with respect to β) inequality constraints
using either a barrier method or a primal dual interior point method. Your final solution must
contain your code, the optimal value of the objective, and the final vector of fitted
coefficients.

Here are some suggestions regarding the tuning parameters if you are using the log-barrier
method:

• t0 = 5 – initial t value for the log-barrier penalty parameter

• µ = 2 – coefficient for the update of the log-barrier penalty parameter

2



• εin = 10−6 – relative tolerance for the objective within the Newton’s method loop (i.e. check
convergence in Newton’s method using |f(xi)− f(xi−1)|/|f(xi−1)| ≤ εin)

• εout = 10−6 – threshold for the log-barrier algorithm stopping rule (i.e. stop when m/t ≤ εout,
where m is the number of constraints)

• we recommend setting the damping parameter controlling the step size in Newton’s method
to 0.9 (see the lecture notes on Newton’s method, page 11)

• α = 0.5 – Newton’s method backtracking parameter α

Notice that

1. you will need to find an initial feasible vector β0: that requires solving a linear program as
discussed in the lecture notes on the Barrier Method;

2. the implementation of the backtracking for interior point methods can be a little tricky: before
computing the value of the objective at a new candidate point, make sure that that point is
feasible! If the candidate point in the backtracking loop is not feasible, that means that the
current stepsize in the is presumably too large and should be shrunk.

4 Binary Image Denoising Revisited [Yu-Xiang]

Recall from Q4 of Homework 3 the binary image denoising problem:

min
β

n∑
i=1

log(1 + e−yiβi) + λ‖Dβ‖1,

where y is an image to be denoised, each component corresponding to a pixel, i.e., y ∈ Rn1n2 is an
unraveled version of an n1×n2 image, and each component of β corresponds to the probability that
a given pixel in the image is equal to 1. The matrix D chosen so that

‖Dβ‖1 =
∑
i∼j
|βi − βj |

where i ∼ j means that pixels i and j are either horizontally or vertically, adjacent.
Since it is hard to solve the primal problem directly (with our current first- and second-order

toolset), Q4 of Homework 3 explored solving the dual problem:

min
u

n∑
i=1

yi(D
Tu)i log(yi(D

Tu)i) + (1− yi(DTu)i) log(1− yi(DTu)i)

subject to 0 ≤ yi(DTu)i ≤ 1, i = 1, . . . n, ‖u‖∞ ≤ λ.

From a dual solution û, a primal solution β̂ is given by

β̂i = −yi log
(
yi(D

T û)i
)

+ yi log
(
1− yi(DT û)i

)
, i = 1, . . . n.

As the dual constraints were complicated to deal with, we “lifted” them into the dual criterion in
what may have looked like a somewhat arbitrary manner. Now we can make this rigorous with
barrier functions and interior point methods.

(a) Let g(u) be the dual criterion function, and let φ(u) be the log barrier function. For the latter,
you should expand the constraint ‖u‖∞ ≤ λ into componentwise constraints on u. Show that
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• ∇g(u) = Dc(u) for some vector c;

• ∇2g(u) = DW (u)DT for some diagonal matrix W ;

• ∇φ(u) = a(u) +Db(u) for some vectors a, b;

• ∇2φ(u) = U(u) +DV (u)DT for some diagonal matrices U, V .

Hence for some barrier constant τ , when minimizing τg(u) + φ(u), write down the Newton step
direction.

(b) Implement the barrier method using Newton’s method for the inner loops. Your function for
the barrier method should take as inputs (besides the obvious inputs y,D, λ): an initial barrier
parameter τ (0) > 0, an update parameter µ > 1 for the barrier parameter, parameters γ1, γ2 > 0 for
the backtracking in Newton’s method, a tolerance εinner > 0 for the inner loop (we stop when the
change in objective values is less than εinner), and a tolerance εouter > 0 for the outer loop (we stop
when the duality gap is less than εouter).

Apply your algorithm on the image data from Q4 of Homework 3, at a tuning parameter value of
λ = 0.25. You can set τ (0) = 5, µ = 10, γ1 = 0.1, γ2 = 0.8, εinner = 10−6, εouter = 10−6. How many
outer iterations did it take to converge? How many total inner iterations (Newton steps)? Roughly
speaking, how does this compare in terms of the number of iterations, and the computational cost,
to your gradient descent implementation from Q4 of Homework 3?

Use the computed dual solution û to recover the primal solution β̂, and then the estimated
probabilities p̂i = 1/(1 + e−β̂i) at each pixel i = 1, . . . n1n2. Plot the corresponding binary image,
by classifying according to whether or not the predicted probabilities are larger than 0.5.

(Hint 1: for the barrier method, you must begin with a strictly feasible point for the dual problem.
But from Q4 of Homework 3, you already have a strictly feasible point for the dual problem at
λ = 0.5. There is an easy way to use such a point to get a strictly feasible point for the dual at
λ = 0.25; this is much easier than recomputing a new strictly feasible point at λ = 0.25...)

(Hint 2: to make your implementation efficient, you should take advantage of the sparsity of D,
when you solve the linear systems at each iteration of Newton’s method. In Matlab or R, this is just
done by making sure that the Hessian is stored as a sparse matrix.)

(c) If the ith component of the dual solution û satisfies |ûi| < λ, then what does this mean about

(Dβ̂)i in the primal? Verify your answer empirically, on the computed solution from part (b).

(Hint: recall the construction of the dual problem, by introducing the auxiliary variables z = Dβ in
the primal problem; inspect the KKT stationarity condition for z, to a derive a relationship here.)

(d) At the end of each outer iteration in the barrier method application in part (b), transform the
dual estimate u into a primal estimate β, and plot this as a grayscale image. Note: this will not
be binary, because the components of β are real-valued, but you can still plot it in grayscale over
its dynamic range. (If the number of outer iterations required until convergence is large, then just
pick estimates from 6 or so outer iterations to display.) What do you notice, as the barrier method
proceeds, about the primal estimates?

Bonus: Can you explain the phenomenon from part (d)?
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