
Homework 5

Convex Optimization 10-725/36-725

Due Tuesday April 21 at 4:00pm
submitted to Mallory Deptola in GHC 8001

(make sure to submit each problem separately)

***Instructions: you will solve 4 questions, choosing two of Q1–Q3 and two of Q4–Q6.

1 Isomorphism of primal-dual feasible set [Veeru]

Given an LP:

min
x

cTx

subject to Ax = b, x ≥ 0,

recall the set of (strictly) feasible primal-dual points, from the first lecture on primal-dual interior
point methods:

F0 = {(x, y, s) : Ax = b, AT y + s = c, x > 0, s > 0}.
Consider the map from F0 → Rn++, defined by

(x, y, s) 7→ x ◦ s,

where x ◦ s = (x1s1, . . . xnsn) denote the elementwise product between x and s. Assume that F0 is
nonempty and A ∈ Rm×n has full row rank. In this problem you will prove that the above map is a
bijection, i.e., it uniquely associates each element of F0 with an element of Rn++, and vice versa.

(a) Consider the primal and dual barrier problems:

min
x

cTx− τ
n∑
i=1

log xi

subject to Ax = b

and

max
y,s

bT y + τ

n∑
i=1

log si

subject to AT y + s = c.

Prove that both problems have unique solutions, for any barrier parameter τ > 0. Note that you
need to show the existence of the minimizers as well.

(b) Use part (a) and the KKT conditions to prove that, for all τ > 0, there exists a unique (x, y, s) ∈
F0 such that

Ax = b, AT y + s = c, (x ◦ s) = τ1,

1

where 1 is the vector of all 1s.

(c) Tweak the barrier problems in part (a) to show that the same result holds as in (b), but when τ1
is replaced by any vector that is positive in each component. Conclude that the map (x, y, s) 7→ x◦s
is indeed a bijection.

(d) Opposite in some sense to interior point methods are penalty methods, which approach the
constraint set from the outside of the feasible region. For our original LP, consider the following
modification:

min
x

cTx+ τ ·
(m∑
i=1

|aTj x− bj |+
m∑
i=1

(xi)−

)
,

where a1, . . . am denote the rows of A, τ > 0 is a penalty parameter and (u)− = max(0,−u) for
u ∈ R. Consider an increasing sequence of parameter values {τk}k=1,2,3,..., with τk → ∞, and let
x?(τk) denote a solution to the above penalized problem at τ = τk. Let x̄ be a limit point of the
sequence {x?(τk)}k=1,2,3,.... Assume that the original LP has a solution x?. Prove that x̄ is a solution
to the original LP.

Hint: Let f(x) = cTx, p(x) =
∑m
i=1 |aTj x−bj |+

∑m
i=1(xi)−, and q(x, τ) = f(x)+τ ·p(x). Abbreviate

xk = x?(τk). You may assume without proof the following facts, for each k = 1, 2, 3, . . .:

• q(xk, τk) ≤ q(xk+1, τk+1);

• p(xk) ≥ p(xk+1);

• f(xk) ≤ f(xk+1);

• f(x?) ≥ q(xk, τk) ≥ f(xk).

Bonus: prove these facts!

2 Safe support vector elimination for SVMs [Junier]

We’ve already seen some pretty neat applications of KKT conditions, but one of the coolest applica-
tions of KKT analysis is that of eliminating covariates (and/or instances) in a lossless manner. That
is, with a careful look at KKT conditions techniques like SAFE rules1 allow us to safely eliminate
covariates or instances without any optimization of the original problem. Such screening rules are
extraordinarily useful since they allow us to better scale our optimization algorithms by solving a
smaller problem after discarding covariates or instances. Although SAFE rules are typically em-
ployed in `1 penalized optimization, we shall use a similar analysis to rule out non-support vectors
from a standard SVM problem below.

We consider the following constrained SVM problem:

min
w
J(w) ≡ 1

2
‖w‖2 subject to H(w) ≡

∑
i∈N

[1− yifw(xi)]+ ≤ s, (1)

where N = {i ∈ N : 1 ≤ i ≤ N}, xi ∈ Rd, yi ∈ {−1, 1}, fw(x) ≡ wTx and s > 0. Furthermore, we

shall define w∗(s) as the optimal solution of (1) and f∗(x|s) ≡ w∗(s)Tx.

(a) Prove that w∗(s) is the optimizer of :

min
v
J(v) ≡ 1

2
‖v‖2 subject to H(v) ≡

∑
i/∈R

[1− yifv(xi)]+ ≤ s,

1http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-126.pdf

2

where R = {i ∈ N : yif
∗(xi|s) > 1}. In other words, show that the instances i ∈ R do not affect

the solution of (1), and can hence be discarded. Hint: consider the Lagrangian of (1), and analyze
stationarity and complementary slackness to show that they are not support vectors.

(b) Suppose that sa > sb.

1. Show that σ ∈ [sb, sa] =⇒ J(w∗(σ)) ≤ J(w∗(sb)).

2. Show that σ ∈ [sb, sa] =⇒ w∗(sa)T (w∗(σ)−w∗(sa)) ≥ 0. Hint: consider KKT conditions for
(1), use convexity of H(w) and primal feasibility of w∗(σ) for (1) with s = sa.

3. Show that we may discard an instance i ∈ N in the optimization of (1) with s ∈ [sb, sa] if
g[sb,sa](i) > 1 where:

g[sb,sa](i) ≡ min
w∈Θ[sb,sa]

yifw(xi), (2)

and Θ[sb,sa] ≡ {w : J(w) ≤ J(w∗(sb)) ∧ w∗(sa)T (w − w∗(sa)) ≥ 0}.

(c) We reduce the screening rule of g[sb,sa](i) > 1 to an analytical formula below. Let γb ≡ J(w∗b)
and γa ≡ J(w∗a).

1. Write out the Lagrangian of g[sb,sa](i) with Lagrange multipliers of µ and ν for constraints
J(w) ≤ γb and w∗(sa)T (w − w∗(sa)) ≥ 0 respectively.

2. Write the KKT conditions of g[sb,sa](i), the optimizer z∗ of (2), and the optimal criterion value
in terms of µ and ν.

3. Show that:

g[sb,sa](i) =

−
√

2γb‖xi‖ if −yif
∗(xi|sa)
‖xi‖ ≥

√
2γa√
γb

yif
∗(xi|sa)−

√
γb−γa
γa

(2γa‖xi‖2 − f∗(xi|sa)2) otherwise.

Hint: use the sign of −yif
∗(xi|sa)
‖xi‖ −

√
2γa√
γb

to guide whether ν = 0.

4. Further simplify the screening rule of g[sb,sa](i) > 1 to:

yif
∗(xi|sa) > 1 and yif

∗(xi|sa)−
√
γb − γa
γa

(2γa‖xi‖2 − f∗(xi|sa)2) > 1.

3 Coordinate descent for the graphical lasso [Mattia]

Let X ∈ Rn×p be a data matrix whose rows are independent observations from N (0,Σ). Normality
theory tells us that for Z ∼ N (0,Σ), Σ−1

ij = 0 implies that the variables Zi and Zj are conditionally
independent given all the other variables {Zk}k/∈{i,j}. If we believe that many pairs of features
recorded in X are conditionally independent given the other features (which is often a reasonable
belief if p is large), then we want an estimate of Σ such that Σ−1 is sparse. This goal can be achieved
by solving the graphical lasso problem

min
Θ∈Sp++

− log det Θ + tr(SΘ) + λ‖Θ‖1, (3)

3

where Sp++ is the set of symmetric p× p positive definite matrices. In the above, S = XTX/n is the
emiprical covariance matrix, Θ serves as our estimate for Σ−1, and ‖Θ‖1 =

∑p
i,j=1 |Θij |.

a) Verify that the KKT stationarity condition for the graphical lasso problem above is

−Θ−1 + S + λΓ = 0

where Γij ∈ ∂|Θij |. To do this, you may need to look up how to compute the gradient of the log-
determinant of a positive definite matrix and the gradient of the trace of a linear transformation of
a symmetric matrix! Let now W = Θ−1. Claim that the KKT stationarity condition above implies
that Wii = Sii + λ for every i = 1, . . . , p.

Consider now partitioning W as

W =

(
W11 w12

w21 w22

)
where W11 ∈ R(p−1)×(p−1), w12 ∈ Rp−1, wT21 ∈ Rp−1, and w22 ∈ R (and consider the same partition
for the other matrices Θ, S, and Γ).

b) Using the fact that WΘ = I and the KKT stationarity condition above, show that

w12 = −W11θ12/θ22

and therefore

W11
θ12

θ22
+ s12 + λγ12 = 0.

c) Let now β = θ12/θ22 ∈ Rp−1. Write a lasso problem (with β as the optimization variable) such
that β = θ12/θ22 is a solution.

Once the lasso problem of part c) is solved, it is easy to recover w12 = −W11β and w21 = wT12.
Furthermore, θ12, θT21, and θ22 are directly obtained by solving(

W11 w12

w21 w22

)(
Θ11 θ12

θ21 θ22

)
=

(
I 0
0 1

)
.

By rearranging appropriately the entries of W , Θ, S, and Γ, one can then iterate the procedure
above to solve for the entire matrix W .

d) Describe an algorithm to estimate Θ based on iterative blockwise minimization using the results
of parts a), b), and c).

e) Explain why, strictly speaking, such an algorithm is in fact not a blockwise coordinate descent
algorithm for the graphical lasso problem as formulated in equation (3).

We will now verify that the coordinate descent algorithm suggested by parts a), b), and c) (which
optimizes over the matrix W and is known as ‘glasso’) is in fact a proper coordinate descent algo-
rithm for the dual problem of the graphical lasso as formulated in equation (3).

f) Consider the graphical lasso dual problem

min
Γ̃∈Sp

− log det(Γ̃ + S)− p subject to ‖Γ̃‖∞ ≤ λ. (4)

4

Write the KKT conditions for the dual problem of equation (4). In particular, verify that the KKT
stationarity condition of the primal graphical lasso problem of equation (3) can be retrieved from
the KKT conditions of the dual problem (possibly after appropriate changes of variable). Finally,
briefly clarify why the ‘glasso’ algorithm that you derived in part d) is a proper coordinate ascent
algorithm for the dual problem of the graphical lasso.

Bonus: Derive the dual of the graphical lasso problem of equation (3).

4 Primal-dual interior point methods for LPs [Veeru]

For the following LP:

min
x

cTx

subject to Ax = b, x ≥ 0,

implement the infeasible path-following algorithm. Assume that A has full row-rank. The method
is described on slide 20 in the first lecture on primal dual interior point methods.

Run the algorithm for the A, b, c given in Q4.mat or Q4.Rdata. You may use the other algorithmic
parameters given in Q4.mat or Q4.Rdata but you can experiment with the parameters for possibly
faster convergence.

(a) Write down the key steps and any important implementation details, such as how you solve
the Newton step and how you make sure you stay in the neighbourhood of the central path.
Attach your code.

(b) Let rb = Ax − b, rc = AT y + s − c as in the slides. Plot the (i) residual ‖(rb, rc, x ◦ s)‖2 vs.
number of Newton steps and (ii) primal objective vs. number of Newton steps separately until
the residual is reduced to ≤ 1e-8 times 1+max(‖b‖2, ‖c‖2). Verify whether the residual plot
reflects R-linear convergence of the residual.

5 NMF via alternating gradient descent [Nicole]

Let V ∈ Rm×n be a given matrix, and let 0 < k < min{m,n} be a given integer. In nonnegative
matrix factorization (NMF), we solve

min
W∈Rm×k, H∈Rk×n

‖V −WH‖2F subject to W ≥ 0, H ≥ 0, (5)

where the constraints W ≥ 0, H ≥ 0 are to be interpreted elementwise.
The NMF problem is a nonconvex problem, and therefore it is difficult to solve. Interestingly,

there is an elegant algorithm for NMF described in Lee & Seung (2001), “Algorithms for non-negative
matrix factorizations” (available here: http://www.dm.unibo.it/~simoncin/nmfconverge.pdf).
Some motivation for NMF can be found in other papers written by these same authors, e.g., Lee &
Seung (2001), “Learning the parts of objects by non-negative matrix factorization” (available here:
http://www.nature.com/nature/journal/v401/n6755/abs/401788a0.html).

Your task is to implement this NMF gradient descent algorithm on the CBCL FACE database
(taken from http://cbcl.mit.edu/software-datasets/FaceData2.html) . A sample of the orig-
inal faces look like:

5

To generate plots throughout, see the provided scripts compact canvas.m or compact canvas.R.

(a) The solution proposed in Lee & Seung alternately minimizes W and H using convex optimaztion
techniques, i.e. we fix W and optimize over H, then fix H and optimize over W , and repeat. Why
is this a good approach? (Hint: think about what is true about the problem if H is fixed)

(b) On the course website, you will find the file face.txt, which contains 2459 faces, each of which
is a 19 x 19 grayscale image. Therefore the file can be read into memory as an array of dimension
361 x 2459, the columns being unraveled images of faces, taking values in between 0 and 255.

Apply the following preprocessing: for each face (column) Vi, normalize it so that the median is
mi = med(Vi) = 0.5, and the median absolute deviation from the median is med(|Vi −mi|) = 0.25.
Truncate any values above 1 and below 1e-4 (since we do not want exact zeros). Now, you should
have a matrix V that looks like (sampled columns):

6

(c) Implement the algorithm described in Theorem 1 of Lee & Seung (2001) to optimize (5). Set
k = 49, and initialize every entry of W,H uniformly at random in [0, 1]. Plot a sample of the
columns of W , similar to the below. Also, plot the objective value across iterations. Does the
objective function strictly decrease? Why?

(d) Each step of this (Lee & Seung) is in special case of a general descent step that we know very
well. Which one? Why?

(e) What are alternatives, still staying within the realm of first-order methods, to ensure that the
entries of W,H are nonnegative on each iteration? What could we do to speed up convergence?

(f) On the course website you will find the file face test.txt, which contains 472 test faces in the
same format as face.txt. Reconstruct these faces by optimizing H with your trained W from part
(b) fixed. What is the average squared error of the reconstructed images (normalized by the number
of images)? Do your reconstructed faces look similar to the test faces?

6 Robust PCA and ADMM [Yuxiang]

In this question, we will develop a fast algorithm for Robust Principal Component Analysis (RPCA)
and use it for the problem of foreground-background segmentation.

RPCA is an interesting optimization formulation independently developed by two groups of au-
thors: Candes, Li, Ma and Wright (http://statweb.stanford.edu/~candes/papers/RobustPCA.
pdf) and Chandrasekaran, Sanghavi, Parrilo and Willsky (http://arxiv.org/pdf/0906.2220.pdf)
in 2009.

Let M ∈ Rm×n be the observed matrix and we hope to decompose it into the sum of a low-rank
matrix L and sparse matrix S.

min
L,S
‖L‖∗ + λ‖S‖1s.t. L+ S = M (6)

where ‖ · ‖∗ is the nuclear norm/trace norm and ‖ · ‖1 is the elementwise 1-norm.

7

The above formulation is well-supported in theory, in that it can exactly recover the low-rank
and sparse component under certain separation conditions even though the formulation uses convex
relaxation of rank and sparsity. More specifically, if M = L0 + S0, and in addition L0 is sufficiently
low-rank and incoherent, S0 is sufficiently sparse, then the optimal solutions of (6) with λ = 1√

maxm,n

obeys L∗ = L0, S
∗ = S0.

Dozens of extensions of the RPCA theory and hundreds of RPCA applications has been developed
since its invention in 2009. In addition, many applicable optimization algorithms have been tried and
Alternating Direction Method of Multipliers (ADMM) (also called Augmented Lagrange Multiplier
algorithm in the original text), with the few tweaks that we will describe later, is among the state-
of-the-art solvers.

6.1 Deriving and implementing ADMM algorithm for RPCA

Refer to the ADMM algorithm described in Section 5 of http://statweb.stanford.edu/~candes/
papers/RobustPCA.pdf. Basically, it constructs the augmented Lagrangian (with an additional
term µ

2 ‖M − L− S‖
2
F comparing to the Lagrangian), and then iteratively solves:

(1) Minimize the augmented Lagrangian w.r.t. L, and update L.

(2) Minimize the augmented Lagrangian w.r.t. S, and update S.

(3) Dual gradient ascent with stepsize µ.

You can follow the following steps.

1. Please write down the formula of the above updates. You will see that (1) and (2) will be
familiar proximal maps.

2. Then implement the algorithm in a language of your choice. The input of the algorithm is M ,
λ, and the output is (L, S). Within the algorithm, there are a number of numerical parameters
to set. Including weight µ, tolerance δ and “maxiter”. In addition, we will use an optional
modification of ADMM, where we increase µ in every iteration via

µ(t) = min{µ(t−1)ρ, µ̄}.

µ̄ is an predefined upper bound and ρ ≥ 1 defines how fast we want µ to increase over the
iterations. When ρ = 1, this becomes the plain ADMM.

Default parameters: By default, you can set λ = 1/maxm,n, ρ = 1.5, µ(0) = 1.25/‖M‖2
where ‖M‖2 is the spectral norm (or operator norm) of M (you can compute it by finding the
largest singular value) and µ̄ = µ(0) ∗ 1e7.

Initialization: You should initialize L, S and the Lagrange multiplier (dual variable) Y with
all 0 matrices.

Stopping conditions: “maxiter” is set to be 40 and δ = 1e−7. You stop when ‖M−L−S‖F ≤
δ‖M‖F or the number of iterations exceed “maxiter”.

3. Debug your code by generating a random low-rank matrix of dimension m × n and rank-r
using codes that look like the following:

m=500;n=600;r=10;

L0=randn(m,r)*randn(r,n);

mask=rand(m,r)<0.1;

num=sum(mask(:));

S0=zeros(m,n);

S0(mask)=8*(rand(num,1)-0.5);

M=L0+S0;

8

run your algorithm and then compare the solution against L0 and S0. Your algorithm should
converge pretty quickly.

4. When you are sure that your code above is correct, modify the code with following trick for
further speed-up. Note that the most expensive subroutine of the algorithm is (1), where we
need to call SVD where the complexity is O(n3). However, we know that all singular values
smaller than 1/µ will be shrinked to 0 anyway and we shouldn’t be computing them at all.
We can substantially save the computation using partial SVD, if we know the cut-off point
where singular value drop below 1/µ. Let the cut-off-point be k, and the matrix we take SVD
be A, you will use the “lansvd” in PROPACK (the package PROPACK.zip is available on the
course website) with the syntex [U, S, V] = lansvd(A, k,′ L′). If you are using R, you can
use propack.svd as in http://cran.r-project.org/web/packages/svd/svd.pdf. The time
complexity will be reduced to O(k2n). This could be the difference between infeasible and
feasible for large scale applications.

Here, we will use a heuristic to estimate k adaptively. Since we are increasing µ in every
iteration, the rank of L will in general be monotonically increasing in every iteration. A
pseudo-code is given below:

a. Initialize k=10;

b. In every iteration:

Update L based on partial svd with parameter k.

if (rank(L)<k),

set k=rank(L+1)+1

else

set k=min(n,k+floor(0.05*n))

Another note is that when k > 0.5n, partial SVD is slower than full SVD, in which case you
should simply use SVD.

6.2 Running RPCA for foreground-background detection in Surveillance
video

Now you will apply your implemented code to a real-life problem! Available on the course website
is data RPCA.zip. Extract this into a folder, and you will find 400 BMP files. These are frames of
a short surveillance video in Singapore Changi airport.

You will load these images into a big data matrix where ith column contains the vectorized ith
image. Change the color image to grayscale image so that we do not need to deal with 3 different
color channels and make sure each entry will be the pixel value in the 0-255 scale.

Using the default parameter, plug in this data matrix as M and solve RPCA.

1. Report the rank of the returned matrix L and number of non-zero entries in the returned S.

2. Visualize L and S respectively by making a video out of them. In Matlab, you can do this by
simply reshaping L and S into a 144 ∗ 176 ∗ 400 array and run “implay”. Make sure that you
find the max and min in L and S, then scale the entries into [0, 1], otherwise the video will
not look correct.

Please have them concatenated so that we have background on the left hand side and fore-
ground on the right hand side. The video will then have size 144 ∗ 352 ∗ 400.

3. Upload the video on YouTube using private sharing and include the link to the video in your
report.

9

6.3 Bonus: Combining RPCA and Matrix completion

Modify your code to handle missing data as in Eqn (1.5) of http://statweb.stanford.edu/

~candes/papers/RobustPCA.pdf.
Taking 10% random pixels as observed and the remaining 10% missing in the above dataset and

run missing-data-RPCA. Make another video of your result and show it in YouTube.
Hint: To get the foreground of every frame, you can subtract the completed columns in L from

M . Directly using S may not have the foreground in S at all due to the subsampling.

10

