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Course setup

Welcome to the course on Convex Optimization, with a focus on
its ties to Statistics and Machine Learning!

Basic adminstrative details:
e Instructor: Ryan Tibshirani

e Teaching assistants: Mattia Ciollaro, Nicole Rafidi, Veeru
Sadhanala, Yu-Xiang Wang

e Course website:
http://www.stat.cmu.edu/~ryantibs/convexopt/

e We will also use Piazza for announcements and discussions


http://www.stat.cmu.edu/~ryantibs/convexopt/

Prerequisites: no formal ones, but class will be fairly fast paced

Assume working knowledge of /proficiency with:

Real analysis, calculus, linear algebra
Core problems in Stats/ML

Programming (Matlab or R)

Data structures, computational complexity

Formal mathematical thinking

If you fall short on any one of these things, it's certainly possible to
catch up; but don't hesitate to talk to us



Evaluation:
e 6 homeworks
e 1 midterm
e 1 little test
e 1 project (can enroll for 9 units with no project)

e Many easy quizzes

Project: something useful /interesting with optimization. Groups of
2 or 3, milestones throughout the semester, details to come

Quizzes: due at midnight the day of each lecture. Should be very
short, very easy if you've attended lecture ...



Scribing: sign up to scribe one lecture per semester, on the course
website (multiple scribes per lecture). Can bump up your grade in
boundary cases

Lecture videos: see links on the course website. Supposed to be
helpful supplements, not replacements for the lectures! Attending
lectures is still best

Auditors: welcome, please audit rather than just sitting in

Most important: work hard and have fun!



Optimization problems are ubiquitous in Statistics and
Machine Learning

Optimization problems underlie most everything we do in Statistics
and Machine Learning. In many courses, you learn how to:

translate ? into P : min f(z)
- z€D
Conceptual idea Optimization problem
Examples of this? Examples of the contrary?

This course: how to solve P, and also why this is important



Presumably, other people have already figured out how to solve

P : ;réig f(z)

So why bother?

Many reasons. Here's two:
1. Different algorithms can perform better or worse for different
problems P (sometimes drastically so)

2. Studying P can actually give you a deeper understanding of
the statistical procedure in question

Optimization is a very current field. It can move quickly, but there
is still much room for progress, especially at the intersection with
Statistics and ML



Example: linear trend filtering

Given observations y; € R, i = 1,...n corresponding to underlying
positions x; =4, 1 =1,...n
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Linear trend filtering
fits a piecewise linear
function, with adap-
tively chosen knots
(Steidl et al., 2006;
Kim et al., 2009)
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] Interior point method,
20 iterations

Proximal gradient de-
scent, 10K iterations
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What's the message here?

So what's the right conclusion here?

Is primal-dual interior point method simply a better method than
proximal gradient descent, coordinate descent? ... No

In fact, different algorithms will work better in different situations.
We'll learn details throughout the course

In the linear trend filtering problem:
e Primal-dual: fast (structured linear systems)
e Proximal gradient: slow (conditioning)

e Coordinate descent: slow (large active set)
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Example: trend significance testing

In the linear trend filtering problem

n

-2

1 2\

min 5> (i = B)7 + A Y 15— 2661 + Bisal
i=1 i=1

the parameter A > 0 is called a tuning parameter. As )\ decreases,

we see more breakpoints (changes in slope) in the solution 3

Timepoint Timepoint Timepoint

A = 20000 A = 1000 A=10

11



The values of A at which the solution 3 exhibits a new breakpoint
are called knots, written

A=A > A3 >

Natural question: when have we made A\ small enough, so that we
mostly capture true structure without picking up spurious trends?

Of course this is a statistical question, but much can be learned
from examining optimality conditions (called KKT conditions) for
the trend filtering problem

Ag Ag Ay Ahs Mg As A2 M

These conditions tells us about the gaps between knots: a bigger
spacing typically occurs when the forthcoming breakpoint is more
meaningful, and this can be made into a precise statistical test
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P-values from our example:
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Central concept: convexity

Historically, linear programs were the focus in optimization

Initially, it was thought that the important distinction was between
linear and nonlinear optimization problems. But some nonlinear
problems turned out to be much harder than others ...

Now it is widely recognized that the right distinction is between
convex and nonconvex problems

Your supplementary textbooks for the course:

Boyd and Vandenberghe A Rockafellar

Optimization

(2004) ©o(1970) (R

Analysis
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Convex sets and functions

Convex set: C' C R™ such that
z,yeC = te+(1—-t)yeC forall 0<t<1

O &

Convex function: f:R™ — R such that dom(f) C R™ convex, and
fltz+ (A =t)y) <tf(z)+ (1 —-1)f(y) for 0<t <1
and all z,y € dom(f)

(v, f(v))
(, f(x)
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Convex optimization problems

Optimization problem:
min f(x)
subject to  ¢i(x) <0,i=1,...m

Here D = dom(f) N2, dom(g;) N(;—, dom(h;), common
domain of all the functions

This is a convex optimization problem provided the functions f
and g;,7 = 1,...m are convex, and h;,j = 1,...p are affine:

hj(:v):ajrqubj, j=1,...p
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Local minima are global minima

For convex optimization problems, local minima are global minima

Formally, if x is feasible—x € D, and satisfies all constraints—and
minimizes f in a local neighborhood,

f(x) < f(y) for all feasible y, ||z —y|l2 < p,

then
f(x) < f(y) for all feasible y
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This is a very useful
fact and will save us
a lot of trouble!
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