Convexity II: Optimization Basics

Ryan Tibshirani Convex Optimization 10-725/36-725

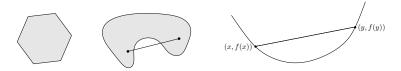
See supplements for reviews of

- basic multivariate calculus
- basic linear algebra

Last time: convex sets and functions

"Convex calculus" makes it easy to check convexity. Tools:

• Definitions of convex sets and functions, classic examples



- Key properties (e.g., first- and second-order characterizations for functions)
- Operations that preserve convexity (e.g., affine composition)

E.g., is
$$\max \left\{ \log \left(\frac{1}{(a^T x + b)^7} \right), \|Ax + b\|_1^3 \right\}$$
 convex?

Outline

Today:

- Optimization terminology
- Properties and first-order optimality
- Equivalent transformations

Optimization terminology

Reminder: a convex optimization problem (or program) is

$$\min_{x \in D} f(x)$$
subject to $g_i(x) \le 0, i = 1, \dots m$

$$Ax = b$$

where f and g_i , $i=1,\ldots m$ are all convex, and the optimization domain is $D=\mathrm{dom}(f)\cap\bigcap_{i=1}^m\mathrm{dom}(g_i)$ (often we do not write D)

- f is called criterion or objective function
- g_i is called inequality constraint function
- If $x \in D$, $g_i(x) \le 0$, i = 1, ...m, and Ax = b then x is called a feasible point
- The minimum of f(x) over all feasible points x is called the optimal value, written f^{\star}

- If x is feasible and $f(x) = f^*$, then x is called an optimal point, a solution, or a minimizer¹
- If x is feasible and $f(x) \leq f^* + \epsilon$, then x is called ϵ -suboptimal
- If x is feasible and $g_i(x) = 0$, then we say g_i is active at x
- Convex minimization can be reposed as concave maximization

min
$$f(x)$$
 max $-f(x)$
s.t. $g_i(x) \le 0$, \Leftrightarrow s.t. $g_i(x) \le 0$, $i = 1, \dots m$
 $Ax = b$ $Ax = b$

Both are called convex optimization problems

¹Note: a convex optimization problem need not have solutions, i.e., need not attain its minimum, but we will not be careful about this

Convex solution sets

Let X_{opt} be the set of all solutions of convex problem, written

$$X_{\mathsf{opt}} = \underset{\mathsf{subject to}}{\operatorname{argmin}} \quad f(x)$$

$$\underset{\mathsf{g}_i(x) \leq 0, \ i = 1, \dots m}{\operatorname{subject to}} \quad g_i(x) \leq 0, \ i = 1, \dots m$$

Key property: X_{opt} is a convex set

Proof: use definitions. If x, y are solutions, then for $0 \le \theta \le 1$,

- $\theta x + (1 \theta)y \in D$
- $g_i(\theta x + (1 \theta)y) \le \theta g_i(x) + (1 \theta)g_i(y) \le 0$
- $A(\theta x + (1 \theta)y) = \theta Ax + (1 \theta)Ay = b$
- $f(\theta x + (1 \theta)y) \le \theta f(x) + (1 \theta)f(y) = f^*$

Therefore $\theta x + (1 - \theta)y$ is also a solution

Another key property: if criterion f is strictly convex, then the solution is unique, i.e., $X_{\rm opt}$ contains one element

Example: lasso

Given $y \in \mathbb{R}^n$, $X \in \mathbb{R}^{n \times p}$, consider the lasso problem:

Is this a convex problem? What is the criterion function? What are the inequality constraints? Equality constraints?

What is the feasible set? Is the solution unique:

- when $n \ge p$ and X has full column rank?
- when p > n ("high-dimensional" case)?

How do our answers change if we changed criterion to Huber loss:

$$\sum_{i=1}^{n} \rho(y_i - x_i^T \beta), \quad \rho(z) = \begin{cases} \frac{1}{2} z^2 & |z| \le \delta \\ \delta |z| - \frac{1}{2} \delta^2 & \text{else} \end{cases} ?$$

Example: support vector machines

Given $y \in \{-1,1\}^n$, $X \in \mathbb{R}^{n \times p}$ with rows $x_1, \dots x_n$, consider the support vector machine or SVM problem:

$$\min_{\beta,\beta_0,\xi} \frac{1}{2} \|\beta\|_2^2 + C \sum_{i=1}^n \xi_i$$
subject to
$$\xi_i \ge 0, \ i = 1, \dots n$$

$$y_i(x_i^T \beta + \beta_0) \ge 1 - \xi_i, \ i = 1, \dots n$$

Is this convex? What is the criterion, what are the constraints?

What is the feasible set? Is the solution (β, β_0, ξ) unique? What if changed the criterion to

$$\frac{1}{2}\|\beta\|_2^2 + \frac{1}{2}\beta_0^2 + C\sum_{i=1}^n \xi_i^2?$$

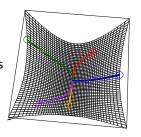
Local minima are global minima

For a convex problem, a feasible point x is called locally optimal is there is some R>0 such that

$$f(x) \le f(y)$$
 for all feasible y such that $||x - y||_2 \le R$

Reminder: for convex optimization problems, local optima are global optima

Proof simply follows from definitions



Nonconvex

Rewriting constraints

The optimization problem

min
$$f(x)$$

subject to $g_i(x) \le 0, i = 1, \dots m$
 $Ax = b$

can be rewritten as

min
$$f(x)$$
 subject to $x \in C$

where $C = \{x : g_i(x) \le 0, i = 1, \dots m, Ax = b\}$ is feasible set. Hence the above formulation is completely general

Note: we can further rewrite this in unconstrained form as

$$\min f(x) + I_C(x)$$

where I_C is the indicator function of C

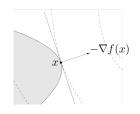
First-order optimality condition

For a convex problem

min
$$f(x)$$
 subject to $x \in C$

and differentiable f, a feasible point x is optimal if and only if

$$\nabla f(x)^T (y - x) \ge 0 \quad \text{for all } y \in C$$



This is called the first-order condition for optimality

In words: all feasible directions from x are aligned with increasing gradient $\nabla f(x)$

Important special case: if $C=\mathbb{R}^n$ (unconstrained optimization), then optimality condition reduces to familiar $\nabla f(x)=0$

Example: quadratic minimization

Consider minimizing the quadratic function

$$f(x) = \frac{1}{2}x^T Q x + b^T x + c$$

where $Q \succeq 0$. The first-order condition says that solution satisfies

$$\nabla f(x) = Qx + b = 0$$

Cases:

- if $Q \succ 0$, then there is a unique solution $x = Q^{-1}b$
- if Q is singular and $b \notin \operatorname{col}(Q)$, then there is no solution (i.e., $\min_x f(x) = -\infty$)
- if Q is singular and $b \in \operatorname{col}(Q)$, then there are infinitely many solutions

$$x = Q^+b + z, \quad z \in \text{null}(Q)$$

where Q^+ is the pseudoinverse of Q

Example: equality-constrained minimization

Consider the equality-constrained convex problem:

min
$$f(x)$$
 subject to $Ax = b$

with f differentiable. Let's prove Lagrange multiplier optimality condition

$$\nabla f(x) + A^T u = 0$$
 for some u

According to first-order optimality, solution \boldsymbol{x} satisfies $A\boldsymbol{x}=\boldsymbol{b}$ and

$$\nabla f(x)^T (y-x) \ge 0$$
 for all y such that $Ay = b$

This is equivalent to

$$\nabla f(x)^T v = 0 \quad \text{for all } v \in \text{null}(A)$$

Result follows since $\operatorname{null}(A)^{\perp} = \operatorname{row}(A)$

Example: projection onto a convex set

Consider projection onto convex set *C*:

min
$$||a - x||_2^2$$
 subject to $x \in C$

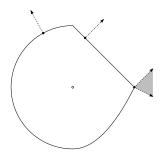
First-order optimality condition says that the solution x satisfies

$$\nabla f(x)^T (y-x) = (x-a)^T (y-x) \ge 0 \quad \text{for all } y \in C$$

Equivalently, this says that

$$a - x \in \mathcal{N}_C(x)$$

where recall $\mathcal{N}_C(x)$ is the normal cone to C at x



Partial optimization

Reminder: $g(x) = \min_{y \in C} f(x,y)$ is convex in x, provided that f is convex in (x,y) and C is a convex set

Therefore we can always partially optimize a convex problem and retain convexity

E.g., if we decompose $x = (x_1, x_2) \in \mathbb{R}^{n_1 + n_2}$, then

$$\min_{\substack{x_1,x_2\\\text{s.t.}}} f(x_1,x_2) & \min_{\substack{x_1\\\\\text{s.t.}}} \tilde{f}(x_1)$$

$$\text{s.t.} \quad g_1(x_1) \leq 0$$

$$g_2(x_2) \leq 0$$

$$\sin_{x_1} \tilde{f}(x_1)$$

$$\text{s.t.} \quad g_1(x_1) \leq 0$$

where $\tilde{f}(x_1) = \min\{f(x_1, x_2) : g_2(x_2) \le 0\}$. The right problem is convex if the left problem is

Example: hinge form of SVMs

Recall the SVM problem

$$\min_{\beta,\beta_{0},\xi} \frac{1}{2} \|\beta\|_{2}^{2} + C \sum_{i=1}^{n} \xi_{i}$$
subject to $\xi_{i} \geq 0, \ y_{i}(x_{i}^{T}\beta + \beta_{0}) \geq 1 - \xi_{i}, \ i = 1, \dots n$

Rewrite the constraints as $\xi_i \ge \max\{0, 1 - y_i(x_i^T \beta + \beta_0)\}$. Indeed we can argue that we have = at solution

Therefore plugging in for optimal ξ gives the hinge form of SVMs:

$$\min_{\beta,\beta_0} \frac{1}{2} \|\beta\|_2^2 + C \sum_{i=1}^n \left[1 - y_i (x_i^T \beta + \beta_0) \right]_+$$

where $a_{+} = \max\{0, a\}$ is called the hinge function

Transformations and change of variables

If $h: \mathbb{R} \to \mathbb{R}$ is a monotone increasing transformation, then

$$\min f(x) \text{ subject to } x \in C$$

$$\iff \min h(f(x)) \text{ subject to } x \in C$$

Similarly, inequality or equality constraints can be transformed and yield equivalent optimization problems. Can use this to reveal the "hidden convexity" of a problem

If $\phi: \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one, and its image covers feasible set C, then we can change variables in an optimization problem:

$$\min_{x} \ f(x) \text{ subject to } x \in C$$

$$\iff \min_{y} \ f(\phi(y)) \text{ subject to } \phi(y) \in C$$

Example: geometric programming

A monomial is a function $f: \mathbb{R}^n_{++} \to \mathbb{R}$ of the form

$$f(x) = \gamma x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n}$$

for $\gamma > 0$, $a_1, \dots a_n \in \mathbb{R}$. A posynomial is a sum of monomials,

$$f(x) = \sum_{k=1}^{p} \gamma_k x_1^{a_{k1}} x_2^{a_{k2}} \cdots x_n^{a_{kn}}$$

A geometric program of the form

min
$$f(x)$$

subject to $g_i(x) \le 1, i = 1, \dots m$
 $h_j(x) = 1, j = 1, \dots r$

where f, g_i , $i=1,\ldots m$ are posynomials and h_j , $j=1,\ldots r$ are monomials. This is nonconvex

Let's prove that a geometric program is equivalent to a convex one. Given $f(x)=\gamma x_1^{a_1}x_2^{a_2}\cdots x_n^{a_n}$, let $y_i=\log x_i$ and rewrite this as

$$\gamma(e^{y_1})^{a_1}(e^{y_2})^{a_2}\cdots(e^{y_n})^{a_n}=e^{a^Ty+b}$$

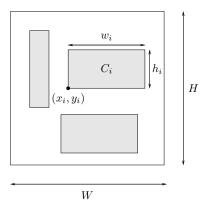
for $b=\log\gamma$. Also, a posynomial can be written as $\sum_{k=1}^p e^{a_k^T y + b_k}$. With this variable substitution, and after taking logs, a geometric program is equivalent to

$$\min_{y} \qquad \log \left(\sum_{k=1}^{p_0} e^{a_{0k}^T y + b_{0k}} \right)$$
subject to
$$\log \left(\sum_{k=1}^{p_i} e^{a_{ik}^T y + b_{ik}} \right) \le 0, \ i = 1, \dots m$$

$$c_i^T y + d_i = 0, \ j = 1, \dots r$$

This is convex, recalling the convexity of soft max functions

Many interesting problems are geometric programs, e.g., floor planning:



See Boyd et al. (2007), "A tutorial on geometric programming", and also Chapter 8.8 of B & V book

Example floor planning program:

$$\min_{\substack{W,H,\\x,y,w,h}} WH$$
subject to
$$0 \le x_i \le W, \ i = 1, \dots n$$

$$0 \le y_i \le H, \ i = 1, \dots n$$

$$x_i + w_i \le x_j, \ (i,j) \in \mathcal{L}$$

$$y_i + h_i \le y_j, \ (i,j) \in \mathcal{B}$$

$$w_i h_i = C_i, \ i = 1, \dots n.$$

Check: why is this a geometric program?

Eliminating equality constraints

Important special case of change of variables: eliminating equality constraints. Given the problem

$$\min_{x} f(x)$$
subject to $g_{i}(x) \leq 0, i = 1, \dots m$

$$Ax = b$$

we can always express any feasible point as $x = My + x_0$, where $Ax_0 = b$ and col(M) = null(A). Hence the above is equivalent to

$$\min_{y} f(My + x_0)$$
subject to $g_i(My + x_0) \le 0, i = 1, \dots m$

Note: this is fully general but not always a good idea

Introducing slack variables

Opposite to eliminating equality constraints: introducing slack variables. Given the problem

min
$$f(x)$$

subject to $g_i(x) \le 0, i = 1, \dots m$
 $Ax = b$

we can transform the inequality constraints via

min
$$f(x)$$

subject to $s_i \ge 0, \ i = 1, \dots m$
 $g_i(x) + s_i = 0, \ i = 1, \dots m$
 $Ax = b$

Note: this is no longer convex unless each $g_i(x) = c_i^T x + d_i$, an affine function

Relaxing nonaffine equality constraints

Given an optimization problem

min
$$f(x)$$
 subject to $x \in C$

we can always take an enlarged constraint set $\tilde{C}\supseteq C$ and consider

min
$$f(x)$$
 subject to $x \in \tilde{C}$

This is called a relaxation and its optimal value is always smaller or equal to that of the original problem

Important special case: relaxing nonaffine equality constraints, i.e.,

$$h_j(x) = 0, \ j = 1, \dots r$$

where h_j , $j=1,\ldots r$ are convex but nonaffine, are replaced with

$$h_j(x) \le 0, \ j = 1, \dots r$$

Example: maximum utility problem

The maximum utility problem models investment/consumption:

$$\max_{x,b} \sum_{t=1}^{T} \alpha_t u(x_t)$$
subject to
$$b_{t+1} = b_t + f(b_t) - x_t, \ t = 1, \dots T$$

$$0 \le x_t \le b_t, \ t = 1, \dots T$$

Here b_t is the budget and x_t is the amount consumed at time t; f is an investment return function, u utility function, both concave and increasing

Is this a convex problem? What if we replace equality constraints with inequalities:

$$b_{t+1} \le b_t + f(b_t) - x_t, \ t = 1, \dots T?$$

Example: principal components analysis

Given $X \in \mathbb{R}^{n \times p}$, consider the low rank approximation problem:

$$\min_{R \in \mathbb{R}^{n \times p}} \|X - R\|_F^2 \text{ subject to } \operatorname{rank}(R) = k$$

Here $\|A\|_F^2=\sum_{i=1}^n\sum_{j=1}^pA_{ij}^2$, the entrywise squared ℓ_2 norm, and $\mathrm{rank}(A)$ denotes the rank of A

Well-known solution is given by singular value decomposition or SVD: if $X=UDV^T$, then solution is

$$R = U_k D_k V_k^T$$

where U_k, V_k are the first k columns of U, V and D_k is the first k diagonal elements of D. I.e., R is reconstruction of X from its first k principal components

This problem is not convex. Why?

We can recast the principal components analysis or PCA problem in a convex form. First rewrite as

$$\min_{Z \in \mathbb{S}^p} \ \|X - XZ\|_F^2 \ \ \mathrm{subject\ to} \ \ \mathrm{rank}(Z) = k, \ Z \ \mathrm{is\ a\ projection}$$

Hence constraint set is the nonconvex set

$$C = \{ Z \in \mathbb{S}^p : \lambda_i(Z) \in \{0, 1\}, \ i = 1, \dots p, \ \operatorname{tr}(Z) = k \}$$

where $\lambda_i(Z)$, $i=1,\ldots n$ are the eigenvalues of Z

Solution here is

$$Z = V_k V_k^T$$

where V_k gives first k columns of V

Now consider relaxing constraint set to $\mathcal{F} = \operatorname{conv}(C)$, its convex hull. But

$$\mathcal{F} = \{ Z \in \mathbb{S}^p : \lambda_i(Z) \in [0, 1], \ i = 1, \dots p, \ \text{tr}(Z) = k \}$$
$$= \{ Z \in \mathbb{S}^p : 0 \le Z \le I, \ \text{tr}(Z) = k \}$$

This is exactly the fantope of order k

Hence the fantope projection problem

$$\min_{Z \in \mathbb{S}^p} \|X - XZ\|_F^2 \text{ subject to } Z \in \mathcal{F}$$

is convex. Remarkably, this is equivalent to the nonconvex PCA problem (admits the same solution)!

(Famous result: Fan (1949), "On a theorem of Weyl conerning eigenvalues of linear transformations")

References and further reading

- S. Boyd and L. Vandenberghe (2004), "Convex optimization", Chapter 4
- O. Guler (2010), "Foundations of optimization", Chapter 4