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Last time: optimization basics

• Optimization terminology (e.g., criterion, constraints, feasible
points, solutions)

• Properties and first-order optimality

• Equivalent transformations (e.g., partial optimization, change
of variables, eliminating equality constraints)
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Outline

Today:

• Linear programming

• Quadratic programming

• Semidefinite programming

• Second-order cone programming
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Linear program (LP)

Optimization problem of the form

min
x

cTx

subject to Dx ≤ d
Ax = b.

Observe that this is a convex optimization problem.
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A bit of history

• Linear programming was introduced by Dantzig in 1940s.

• Vast range of applications.

• Closely related to game theory (two-person, zero-sum games).

• Simplex method (1940s): One of the first (and still widely
used) algorithms for solving linear programs.

• Interior-point methods (1980s): Theoretically fastest
algorithms for solving linear programs.

• State-of-the-art solvers can easily solve problems with millions
of variables and constraints.

• Polyhedra (feasible set of a linear program) have a lot of neat
math properties.
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Example: Diet Problem

Find cheapest combination of foods that satisfies some nutritional
requirements.

min
x

cTx

subject to Dx ≥ d
x ≥ 0.

Here

• cj : per-unit cost of food j

• di: minimum required intake of nutrient i

• Dij : content of nutrient i per unit of food j

• xj : units of food j in the diet
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Example: Transportation Problem
Ship some commodity from a set of m sources to a set of n
destinations at minimum cost.

min
x

m∑
i=1

n∑
j=1

cijxij

subject to

n∑
j=1

xij ≤ si, i = 1, . . . ,m

m∑
i=1

xij ≥ dj , j = 1, . . . , n

x ≥ 0.

Here

• si: supply at source i
• dj : demand at destination j
• cij : per-unit shipping cost from i to j
• xij : units shipped from i to j
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Example: `1-minimization

Heuristic to find a sparse solution to an under-determined system
of equations

min
x

‖x‖1

subject to Ax = b.

Here A ∈ Rm×n, b ∈ Rm with m < n.
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Example: Dantzig selector

Tweak on previous model assuming noisy measurements:

b = Ax+ ε

where ε ∼ N(0, σ2I).

Dantzig selector:

min
x

‖x‖1

subject to ‖AT(b−Ax)‖∞ ≤ λσ.
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Standard form

A linear program is in standard form if it is written as

min
x

cTx

subject to Ax = b

x ≥ 0.

Any linear program can be rewritten in standard form.
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Convex quadratic programming

Optimization problem of the form

min
x

cTx+
1

2
xTQx

subject to Dx ≤ d
Ax = b,

where Q symmetric and positive semidefinite.
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Example: portfolio optimization

Model to construct a financial portfolio with optimal
performance/risk tradeoff:

max
x

µTx− γ

2
xTQx

subject to 1Tx = 1

x ≥ 0,

Here

• µ : expected assets’ returns

• Q : covariance matrix of assets’ returns

• γ : risk aversion

• x : portfolio holdings (percentages)
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Example: support vector machines

Let y ∈ {−1, 1}n, and X ∈ Rn×p with rows x1, . . . xn be given.

Support vector machine (SVM) problem:

min
β,β0,ξ

1

2
‖β‖22 + C

n∑
i=1

ξi

subject to yi(x
T
i β + β0) ≥ 1− ξi, i = 1, . . . n

ξi ≥ 0, i = 1, . . . n
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Standard form

A quadratic program is in standard form if it is written as

min
x

cTx+
1

2
xTQx

subject to Ax = b

x ≥ 0.

Any quadratic program can be rewritten in standard form.
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Semidefinite programming

Consider linear programming again:

min
x

cTx

subject to Dx ≤ d
Ax = b.

Can generalize by changing “≤” to a different partial order.
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Semidefinite program

A bit of notation:

• Sn = space of symmetric n× n real matrices

• Cone of positive semidefinite matrices:

Sn+ := {X ∈ Sn : uTXu ≥ 0 for all u ∈ Rn}.

• Linear algebra facts:

X ∈ Sn ⇒ λ(X) ∈ Rn

X ∈ Sn+ ⇔ λ(X) ∈ Rn+
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Facts about Sn and Sn+

• Canonical inner product in Sn: Given X,Y ∈ Sn

〈X,Y 〉 = X • Y := trace(XY )

• Sn+ is a closed convex cone

• The interior of Sn+ is

Sn++ := {X ∈ Sn : uTXu > 0 for all u ∈ Rn \ {0}}.

• X ∈ Sn++ ⇔ λ(X) ∈ Rn++.

Loewner ordering: Given X,Y ∈ Sn

X � Y ⇔ X − Y ∈ Sn+.
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Semidefinite program (SDP)

Optimization problem of the form

min
x

cTx

subject to

n∑
j=1

Fjxj � F0

Ax = b.

Here Fj ∈ Sd, j = 0, 1, . . . , n and A ∈ Rm×n, c ∈ Rn, b ∈ Rm.

A semidefinite program is a convex optimization problem.
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Standard form

A semidefinite program is in standard form if it is written as

min
X

C •X

subject to Ai •X = bi, i = 1, . . . ,m

X � 0.

Observations:

• Any linear program can be cast as a semidefinite program.

• Any semidefinite program can be written in standard form.
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A bit of history

• Eigenvalue optimization, LMI problems (1960s – 1970s)

• Lovász theta function (1979) in information theory

• Interior-point algorithms for SDP (1980s, 1990s)

• Advancements in theory, algorithms, applications (1990s)

• Extensions to symmetric cones, general-purpose solvers

• New algorithms and applications in data and imaging science
(2000s–)
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Example: theta function

Assume G = (N,E) undirected graph, N = {1, . . . , n}.

• ω(G) := clique number of G

• χ(G) := chromatic number of G

Theta function:

ϑ(G) := max
X

11T •X
subject to I •X = 1

Xij = 0, (ij) 6∈ E
X � 0.

Neat property (Lovász):

ω(Ḡ) ≤ ϑ(G) ≤ χ(Ḡ).
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Example: nuclear norm minimization

Heuristic to find a low-rank solution to an under-determined
system of matrix equations.

min
X

‖X‖tr

subject to A(X) = b.

Here A : Rm×n → Rp linear map, b ∈ Rp, and ‖ · ‖tr is the
“nuclear norm”:

‖X‖tr = ‖σ(X)‖1
Nuclear norm: dual of operator norm

‖X‖op = ‖σ(X)‖∞ = max{‖Xu‖2 : ‖u‖2 ≤ 1}.
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Conic programming

LP and SDP: special cases of conic programming.

Conic program

min
x

cTx

subject to d−Dx ∈ K
Ax = b.

Here

• c, x ∈ Rn

• D : Rn → Y linear, d ∈ Y for some Euclidean space Y

• K ⊆ Y is a closed convex cone.

• write x �K y for y − x ∈ K
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Second-order conic programming

Second-order cone (aka Lorentz cone):

Qn :=

{
x =

[
x0
x̄

]
∈ Rn : x0 ≥ ‖x̄‖

}
.

Second-order cone program: Optimization problem of the form

min
x

cTx

subject to d−Dx ∈ Q
Ax = b

where
Q = Qn1 × · · · × Qnr .
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Second-order cone programming (SOCP)

A second-order program is in standard form if it is written as

min cTx
subject to Ax = b

x �Q 0,

for Q = Qn1 × · · · × Qnr .

Observations

• Case r = 1 can be solved in closed-form.

• Interesting case: r ≥ 2.

• LP ( SOCP ( SDP.
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Example: Convex QCQP
QCQP: quadratically constrained quadratic programming.

Assume Q = LLT ∈ Sn, q ∈ Rn, ` ∈ R. Then

xTQx+ qTx+ ` ≤ 0

can be recast as∥∥∥∥∥∥
 LTx

1 + qTx+ `

2

∥∥∥∥∥∥ ≤ 1− qTx− `
2

.

Therefore a QCQP problem of the form

min xTQ0x+ qT0 x

subject to xTQix+ qTi x+ `i ≤ 0, i = 1, . . . , r

can be recast as an SOCP if Qi � 0, i = 0, . . . , r.
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Other conic programs

Sometimes it is useful to combine LP/SOCP/SDP:

• Given A ∈ Sn find the nearest matrix to A in Sn+.

• Suppose we can only change certain entries. For example,
maintain zeros in

A =


1 0.5 0 0

0.5 0.2 0.4 0
0 0.4 1 0.6
0 0 0.6 1.1


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Other conic programs

In general, we can consider a conic program of the form

min cTx
subject to Ax = b

x ∈ K,

where K = K1 × · · · ×Kr and each Ki is one of

Rn+, Qn, Sn+, Rn.
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