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Last time: gradient descent

Consider the problem

min f(x)
for f convex and differentiable, dom(f) = R"™. Gradient descent:
choose initial z(9) € R", repeat

2R — (k=1) _ t - Vf(x(kfl)), k=1,2,3,...

Step sizes t; chosen to be fixed and small, or by backtracking line
search

If V£ Lipschitz, gradient descent has convergence rate O(1/¢)

Downsides:
e Requires f differentiable <— next lecture

e Can be slow to converge < two lectures from now
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Today: crucial mathematical underpinnings!

Subgradients

Examples

Subgradient rules

Optimality characterizations



Subgradients

Remember that for convex and differentiable f,
fly) > f(z)+ V(@) (y—=z) forall z,y
l.e., linear approximation always underestimates f
A subgradient of a convex function f at x is any g € R" such that

fly) > f@)+g"(y—x) forally

o Always exists
e If f differentiable at x, then g = V f(x) uniquely

e Actually, same definition works for nonconvex f (however,
subgradients need not exist)



Examples of subgradients

Consider f: R — R, f(x) = ||
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e For x # 0, unique subgradient g = sign(z)

e For x = 0, subgradient g is any element of [—1, 1]
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Consider f: R" — R, f(x)
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e For x # 0, unique subgradient g = z/||x||2
e For x = 0, subgradient g is any element of {z
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e For x; = 0, ith component g; is any element of [—1,1]

sign

i ith component g;
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e Forax; #0



Let f1, fo : R™ — R be convex and differentiable, and consider

f(z) = max{fi(z), fa(z)}

e For fi(z) > fa(x), unique subgradient g = V f1(x)
e For fo(z) > fi(z), unique subgradient g = V fa(z)
e For fi(z) = fa(z), subgradient g is any point on the line

segment between V fi(x) and V fa(z)



Subdifferential

Set of all subgradients of convex f is called the subdifferential:

Of(x) ={g € R": g is a subgradient of f at =}

Of(x) is closed and convex (even for nonconvex f)

Nonempty (can be empty for nonconvex f)
If f is differentiable at x, then 0f(z) = {V f(z)}
If 0f(z) = {g}, then f is differentiable at = and Vf(z) =g



Connection to convex geometry

Convex set C' C R"™, consider indicator function I : R™ — R,

0 ifzeC

Ic(x):I{xEC}:{OO frdC

For z € C, dIc(x) = Ne(z), the normal cone of C at z, recall

Ne(z) ={geR": g7z > gTy for any y € C}

Why? By definition of subgradient g,

Io(y) > Io(z) +¢" (y— ) forall y

e Fory¢ C, Ic(y) = o0
e For 3y € C, this means 0 > ¢ (y — )
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Subgradient calculus

Basic rules for convex functions:
e Scaling: d(af) =a-0f provided a > 0
e Addition: 9(f1 + f2) = 0f1 + O0f2
e Affine composition: if g(z) = f(Ax + b), then

dg(x) = ATof(Az +b)
e Finite pointwise maximum: if f(z) = max;—1 __m fi(z), then
of(z) = conv< U 8fz(x)>
i:fi(x)=f(x)

the convex hull of union of subdifferentials of all active
functions at
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e General pointwise maximum: if f(z) = maxscg fs(x), then
of(x) 2 cl{conv( U Ofs(:n))}
s:fs(x)=f(x)
and under some regularity conditions (on S, fs), we get =

e Norms: important special case, f(x) = ||z|[,. Let ¢ be such
that 1/p+1/q = 1, then

|z|l, = max 2Tz
S EES

Hence

Of (z) = argmax 27z
lIllg<1
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Why subgradients?

Subgradients are important for two reasons:

e Convex analysis: optimality characterization via subgradients,
monotonicity, relationship to duality

e Convex optimization: if you can compute subgradients, then
you can minimize (almost) any convex function
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Optimality condition

For any f (convex or not),
f(z¥) =min f(z) <= 0€df(z")

*

l.e., * is a minimizer if and only if 0 is a subgradient of f at x*.

This is called the subgradient optimality condition

Why? Easy: g = 0 being a subgradient means that for all y
fly) = fa*) + 0" (y —a*) = f(z¥)

Note the implication for a convex and differentiable function f,

with af (z) = {V f(z)}
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Derivation of first-order optimality

Example of the power of subgradients: we can use what we have
learned so far to derive the first-order optimality condition. Recall
that for f convex and differentiable, the problem

min f(z) subject to z € C
is solved at z if and only if
Vi) '(y—x)>0 forall yeC
Intuitively says that gradient increases as we move away from z
How to see this? First recast problem as
min f(x) + Io(x)
Now apply subgradient optimality: 0 € 9(f(z) + Ic(z))
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But

0€d(f(z)+Ic

—

0€{Vf(2)}+Nc(x)

— Vf(z) € No(z)

—Vf(x) e >-Vfx)ly forall eC
Vi) '(y—z)>0forall yeC

z)
z)

rru

as desired

Note: the condition 0 € df(z) + Nc(x) is a fully general condition
for optimality in a convex problem. But this is not always easy to
work with (KKT conditions, later, are easier)
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Example: lasso optimality conditions

Given y € R", X € R™*P, lasso problem can be parametrized as:

1
in ~|ly — XB|3+ A
min o fly — X5l + AllBl

where A > 0. Subgradient optimality:

1
0€ 95 ly— X3+ MAll)

— 0e—-XT(y—XB)+ b1
— XT(y—-Xp) =X

for some v € 9||B]1, i.e.,
{1} if ;>0

vied {1} fBi<0, i=1,...p
[—1,1] if Bi=0
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Write X7, ... X, for columns of X. Then subgradient optimality
reads:

X[y —XB)=X-sign(B) if B #0
X (y— XB)| <A if ;=0

Note: the subgradient optimality conditions do not directly lead to
an expression for a lasso solution ... however they do provide a way
to check lasso optimality

They are also helpful in understanding the lasso estimator; e.g., if
X (y = XB)| < A then ;=0
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Example: soft-thresholding
Simplfied lasso problem with X = I:

- A
nin 3 M B3 + AllBlh

This we can solve directly using subgradient optimality. Solution is
B = Sx(y), where S} is the soft-thresholding operator:

yz’_)\ ifyi>)\
[Sx(y)]i =40 if A<y, <\, i=1,...n
y¢+)\ ifyi<—)\

Check: from last slide, subgradient optimality conditions are

yi — Bi = A-sign(B;) if B; #0
|yz_ﬁi‘§>\ if,BiZO
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Now plug in 8 = S\(y) and check these are satisfied:
e Wheny, >\, Bi=y; —A>0,s0y; —Bi=A=A-1
e When y; < —\, argument is similar
e When |y;| < A, 8; =0, and |y; — Bi| = [yi| < A

1.0

0.5

Soft-thresholding in
one variable:

0.0

-0.5

-1.0
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Example: distance to a convex set

Recall the distance function to a convex set C:

dist(z,C) = min ||y — |2
yeC
This is a convex function. What are its subgradients?

Write dist(z, C') = ||x — Po(x)||2, where Po(z) is the projection of
x onto C. Then when dist(z, C) > 0,

x — Po(z) }

adist(z, C) = {Hx—Pc(x)Hg

Only has one element, so in fact dist(x, C) is differentiable and
this is its gradient
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We will only show one direction, i.e., that

x — Po(x)

T ¢ adist(x, C)
|z — Po(z)]2

Write u = Po(x). Then by first-order optimality conditions for a
projection,
(u—2)T(y—u) >0 forall yeC

Hence
CCH={y:(u—2)"(y—u)>0}

Claim: for any y,

(z —u)'(y —u)

dist(y, C) >
lz = ull2

Check: first, for y € H, the right-hand side is <0
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Now for iy ¢ H, we have (z —u)” (y —u) = ||z — ul2|ly — u||2 cos @

where 0 is the angle between x — u and y — u. Thus

z—u)l(y—u ; -
( Hx)— Etyb : = |ly — ull2 cos & = dist(y, H) < dist(y, C)
as desired

Using the claim, we have for any y

. (z—u)' -z +o—u)
dist(y, C) > [ — ul2
T
—H%“’?*(H — ull2 > v

Hence g = (x — u)/||z — u||2 is a subgradient of dist(z,C) at x
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