Duality in General Programs

Ryan Tibshirani Convex Optimization 10-725/36-725

Last time: duality in linear programs

Given $c \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $G \in \mathbb{R}^{r \times n}$, $h \in \mathbb{R}^r$:

Explanation: for any u and $v \ge 0$, and x primal feasible,

$$u^T(Ax-b) + v^T(Gx-h) \le 0, \quad \text{i.e.,}$$

$$(-A^Tu - G^Tv)^Tx \ge -b^Tu - h^Tv$$

So if $c = -A^T u - G^T v$, we get a bound on primal optimal value

Explanation # 2: for any u and $v \ge 0$, and x primal feasible

$$c^{T}x \ge c^{T}x + u^{T}(Ax - b) + v^{T}(Gx - h) := L(x, u, v)$$

So if C denotes primal feasible set, f^{\star} primal optimal value, then for any u and $v \geq 0$,

$$f^{\star} \; \geq \; \min_{x \in C} \; L(x,u,v) \; \geq \; \min_{x} \; L(x,u,v) \; := \; g(u,v)$$

In other words, g(u,v) is a lower bound on f^{\star} for any u and $v\geq 0$. Note that

$$g(u,v) = \begin{cases} -b^T u - h^T v & \text{if } c = -A^T u - G^T v \\ -\infty & \text{otherwise} \end{cases}$$

This second explanation reproduces the same dual, but is actually completely general and applies to arbitrary optimization problems (even nonconvex ones)

Outline

Today:

- Lagrange dual function
- · Langrange dual problem
- Weak and strong duality
- Examples
- Preview of duality uses

Lagrangian

Consider general minimization problem

min
$$f(x)$$

subject to $h_i(x) \le 0, i = 1, \dots m$
 $\ell_i(x) = 0, j = 1, \dots r$

Need not be convex, but of course we will pay special attention to convex case

We define the Lagrangian as

$$L(x, u, v) = f(x) + \sum_{i=1}^{m} u_i h_i(x) + \sum_{j=1}^{r} v_j \ell_j(x)$$

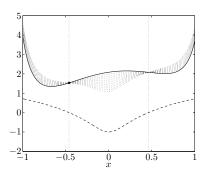
New variables $u\in\mathbb{R}^m,v\in\mathbb{R}^r$, with $u\geq 0$ (implicitly, we define $L(x,u,v)=-\infty$ for u<0)

Important property: for any $u \ge 0$ and v,

$$f(x) \ge L(x, u, v)$$
 at each feasible x

Why? For feasible x,

$$L(x, u, v) = f(x) + \sum_{i=1}^{m} u_i \underbrace{h_i(x)}_{\leq 0} + \sum_{j=1}^{r} v_j \underbrace{\ell_j(x)}_{=0} \leq f(x)$$



- Solid line is *f*
- Dashed line is h, hence feasible set $\approx [-0.46, 0.46]$
- $\begin{array}{l} \bullet \ \, \text{Each dotted line shows} \\ L(x,u,v) \ \, \text{for different} \\ \text{choices of} \ \, u \geq 0 \ \, \text{and} \ \, v \\ \end{array}$

(From B & V page 217)

Lagrange dual function

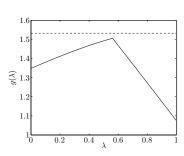
Let C denote primal feasible set, f^{\star} denote primal optimal value. Minimizing L(x,u,v) over all x gives a lower bound:

$$f^{\star} \geq \min_{x \in C} L(x, u, v) \geq \min_{x} L(x, u, v) := g(u, v)$$

We call g(u,v) the Lagrange dual function, and it gives a lower bound on f^* for any $u \geq 0$ and v, called dual feasible u,v

- Dashed horizontal line is f^*
- Dual variable λ is (our u)
- Solid line shows $g(\lambda)$

(From B & V page 217)



Example: quadratic program

Consider quadratic program:

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} x^T Q x + c^T x$$

subject to
$$Ax = b, \ x \ge 0$$

where $Q \succ 0$. Lagrangian:

$$L(x, u, v) = \frac{1}{2}x^{T}Qx + c^{T}x - u^{T}x + v^{T}(Ax - b)$$

Lagrange dual function:

$$g(u,v) = \min_{x \in \mathbb{R}^n} L(x,u,v) = -\frac{1}{2} (c - u + A^T v)^T Q^{-1} (c - u + A^T v) - b^T v$$

For any $u \geq 0$ and any v, this is lower a bound on primal optimal value f^\star

Same problem

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} x^T Q x + c^T x$$

subject to
$$Ax = b, \ x \ge 0$$

but now $Q \succeq 0$. Lagrangian:

$$L(x, u, v) = \frac{1}{2}x^{T}Qx + c^{T}x - u^{T}x + v^{T}(Ax - b)$$

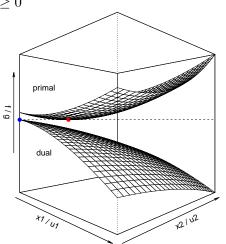
Lagrange dual function:

$$g(u,v) = \begin{cases} -\frac{1}{2}(c-u+A^Tv)^TQ^+(c-u+A^Tv) - b^Tv \\ & \text{if } c-u+A^Tv \perp \text{null}(Q) \\ -\infty & \text{otherwise} \end{cases}$$

where Q^+ denotes generalized inverse of Q. For any $u \geq 0$, v, and $c - u + A^T v \perp \text{null}(Q)$, g(u, v) is a nontrivial lower bound on f^*

Example: quadratic program in 2D

We choose f(x) to be quadratic in 2 variables, subject to $x \geq 0$. Dual function g(u) is also quadratic in 2 variables, also subject to u > 0



Dual function g(u) provides a bound on f^* for every $u \ge 0$

Largest bound this gives us: turns out to be exactly f^* ... coincidence?

More on this later, via KKT conditions

Lagrange dual problem

Given primal problem

$$\min_{x} f(x)$$
subject to
$$h_{i}(x) \leq 0, \quad i = 1, \dots m$$

$$\ell_{j}(x) = 0, \quad j = 1, \dots r$$

Our constructed dual function g(u,v) satisfies $f^* \geq g(u,v)$ for all $u \geq 0$ and v. Hence best lower bound is given by maximizing g(u,v) over all dual feasible u,v, yielding Lagrange dual problem:

$$\max_{u,v} g(u,v)$$

subject to $u \ge 0$

Key property, called weak duality: if dual optimal value g^* , then

$$f^{\star} \geq g^{\star}$$

Note that this always holds (even if primal problem is nonconvex)

Another key property: the dual problem is a convex optimization problem (as written, it is a concave maximization problem)

Again, this is always true (even when primal problem is not convex)

By definition:

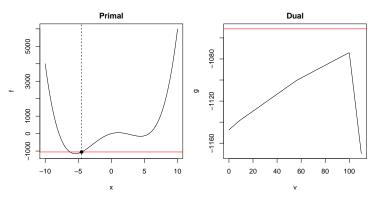
$$g(u,v) = \min_{x} \left\{ f(x) + \sum_{i=1}^{m} u_i h_i(x) + \sum_{j=1}^{r} v_j \ell_j(x) \right\}$$

$$= -\max_{x} \left\{ -f(x) - \sum_{i=1}^{m} u_i h_i(x) - \sum_{j=1}^{r} v_j \ell_j(x) \right\}$$
pointwise maximum of convex functions in (u,v)

I.e., g is concave in (u,v), and $u\geq 0$ is a convex constraint, hence dual problem is a concave maximization problem

Example: nonconvex quartic minimization

Define $f(x) = x^4 - 50x^2 + 100x$ (nonconvex), minimize subject to constraint $x \ge -4.5$



Dual function g can be derived explicitly (via closed-form equation for roots of a cubic equation). Form of g is quite complicated, and would be hard to check directly if g is concave ... but it must be!

Strong duality

Recall that we always have $f^\star \geq g^\star$ (weak duality). On the other hand, in some problems we have observed that actually

$$f^{\star} = g^{\star}$$

which is called strong duality

Slater's condition: if the primal is a convex problem (i.e., f and $h_1, \ldots h_m$ are convex, $\ell_1, \ldots \ell_r$ are affine), and there exists at least one strictly feasible $x \in \mathbb{R}^n$, meaning

$$h_1(x) < 0, \dots h_m(x) < 0$$
 and $\ell_1(x) = 0, \dots \ell_r(x) = 0$

then strong duality holds

This is a pretty weak condition. (Further refinement: only require strict inequalities over functions h_i that are not affine)

LPs: back to where we started

For linear programs:

- Easy to check that the dual of the dual LP is the primal LP
- Refined version of Slater's condition: strong duality holds for an LP if it is feasible
- Apply same logic to its dual LP: strong duality holds if it is feasible
- Hence strong duality holds for LPs, except when both primal and dual are infeasible

In other words, we nearly always have strong duality for LPs

Example: support vector machine dual

Given $y \in \{-1,1\}^n$, $X \in \mathbb{R}^{n \times p}$, rows $x_1, \dots x_n$, recall the support vector machine problem:

$$\min_{\beta,\beta_0,\xi} \frac{1}{2} \|\beta\|_2^2 + C \sum_{i=1}^n \xi_i$$
subject to
$$\xi_i \ge 0, \ i = 1, \dots n$$

$$y_i(x_i^T \beta + \beta_0) \ge 1 - \xi_i, \ i = 1, \dots n$$

Introducing dual variables $v, w \ge 0$, we form the Lagrangian:

$$L(\beta, \beta_0, \xi, v, w) = \frac{1}{2} \|\beta\|_2^2 + C \sum_{i=1}^n \xi_i - \sum_{i=1}^n v_i \xi_i + \sum_{i=1}^n w_i (1 - \xi_i - y_i (x_i^T \beta + \beta_0))$$

Minimizing over β , β_0 , ξ gives Lagrange dual function:

$$g(v,w) = \begin{cases} -\frac{1}{2}w^T \tilde{X} \tilde{X}^T w + 1^T w & \text{if } w = C1 - v, \ w^T y = 0 \\ -\infty & \text{otherwise} \end{cases}$$

where $\tilde{X} = \mathrm{diag}(y)X$. Thus SVM dual problem, eliminating slack variable v, becomes

$$\max_{w} -\frac{1}{2}w^{T}\tilde{X}\tilde{X}^{T}w + 1^{T}w$$
subject to $0 \le w \le C1, \ w^{T}y = 0$

Check: Slater's condition is satisfied, and we have strong duality. Further, from study of SVMs, might recall that at optimality

$$\beta = \tilde{X}^T w$$

This is not a coincidence, as we'll later via the KKT conditions

Duality gap

Given primal feasible x and dual feasible u, v, the quantity

$$f(x) - g(u, v)$$

is called the duality gap between x and u, v. Note that

$$f(x) - f^* \le f(x) - g(u, v)$$

so if the duality gap is zero, then x is primal optimal (and similarly, u,v are dual optimal)

From an algorithmic viewpoint, provides a stopping criterion: if $f(x)-g(u,v)\leq \epsilon$, then we are guaranteed that $f(x)-f^\star\leq \epsilon$

Very useful, especially in conjunction with iterative methods ... more dual uses in coming lectures

Dual norms

Let ||x|| be a norm, e.g.,

- ℓ_p norm: $||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$, for $p \ge 1$
- Trace norm: $\|X\|_{\operatorname{tr}} = \sum_{i=1}^r \sigma_i(X)$

We define its dual norm $||x||_*$ as

$$||x||_* = \max_{||z|| \le 1} z^T x$$

Gives us the inequality $|z^Tx| \leq \|z\| \|x\|_*$, like Cauchy-Schwartz. Back to our examples,

- ℓ_p norm dual: $(\|x\|_p)_* = \|x\|_q$, where 1/p + 1/q = 1
- Trace norm dual: $(\|X\|_{\operatorname{tr}})_* = \|X\|_{\operatorname{op}} = \sigma_{\max}(X)$

Dual norm of dual norm: it turns out that $||x||_{**} = ||x||$... we'll see connections to duality (including this one) in coming lectures

References

- S. Boyd and L. Vandenberghe (2004), "Convex optimization", Chapter 5
- R. T. Rockafellar (1970), "Convex analysis", Chapters 28–30