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Last time: duality

Given a minimization problem

min f(x)

subject to hi(x) ≤ 0, i = 1, . . .m

`j(x) = 0, j = 1, . . . r

we defined the Lagrangian:

L(x, u, v) = f(x) +

m∑
i=1

uihi(x) +

r∑
j=1

vj`j(x)

and Lagrange dual function:

g(u, v) = min
x

L(x, u, v)
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The subsequent dual problem is:

max
u,v

g(u, v)

subject to u ≥ 0

Important properties:

• Dual problem is always convex, i.e., g is always concave (even
if primal problem is not convex)

• The primal and dual optimal values, f? and g?, always satisfy
weak duality: f? ≥ g?

• Slater’s condition: for convex primal, if there is an x such that

h1(x) < 0, . . . hm(x) < 0 and `1(x) = 0, . . . `r(x) = 0

then strong duality holds: f? = g?. (Can be further refined to
strict inequalities over the nonaffine hi, i = 1, . . .m)
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Outline

Today:

• KKT conditions

• Examples

• Constrained and Lagrange forms

• Uniqueness with `1 penalties
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Karush-Kuhn-Tucker conditions

Given general problem

min f(x)

subject to hi(x) ≤ 0, i = 1, . . .m

`j(x) = 0, j = 1, . . . r

The Karush-Kuhn-Tucker conditions or KKT conditions are:

• 0 ∈ ∂f(x) +
m∑
i=1

ui∂hi(x) +

r∑
j=1

vj∂`j(x) (stationarity)

• ui · hi(x) = 0 for all i (complementary slackness)

• hi(x) ≤ 0, `j(x) = 0 for all i, j (primal feasibility)

• ui ≥ 0 for all i (dual feasibility)
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Necessity

Let x? and u?, v? be primal and dual solutions with zero duality
gap (strong duality holds, e.g., under Slater’s condition). Then

f(x?) = g(u?, v?)

= min
x

f(x) +

m∑
i=1

u?ihi(x) +

r∑
j=1

v?j `j(x)

≤ f(x?) +
m∑
i=1

u?ihi(x
?) +

r∑
j=1

v?j `j(x
?)

≤ f(x?)

In other words, all these inequalities are actually equalities
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Two things to learn from this:

• The point x? minimizes L(x, u?, v?) over x ∈ Rn. Hence the
subdifferential of L(x, u?, v?) must contain 0 at x = x?—this
is exactly the stationarity condition

• We must have
∑m

i=1 u
?
ihi(x

?) = 0, and since each term here
is ≤ 0, this implies u?ihi(x

?) = 0 for every i—this is exactly
complementary slackness

Primal and dual feasibility hold by virtue of optimality. Therefore:

If x? and u?, v? are primal and dual solutions, with zero duality
gap, then x?, u?, v? satisfy the KKT conditions

(Note that this statement assumes nothing a priori about convexity
of our problem, i.e., of f, hi, `j)
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Sufficiency

If there exists x?, u?, v? that satisfy the KKT conditions, then

g(u?, v?) = f(x?) +

m∑
i=1

u?ihi(x
?) +

r∑
j=1

v?j `j(x
?)

= f(x?)

where the first equality holds from stationarity, and the second
holds from complementary slackness

Therefore the duality gap is zero (and x? and u?, v? are primal and
dual feasible) so x? and u?, v? are primal and dual optimal. Hence,
we’ve shown:

If x? and u?, v? satisfy the KKT conditions, then x? and u?, v?

are primal and dual solutions
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Putting it together

In summary, KKT conditions:

• always sufficient

• necessary under strong duality

Putting it together:

For a problem with strong duality (e.g., assume Slater’s condi-
tion: convex problem and there exists x strictly satisfying non-
affine inequality contraints),

x? and u?, v? are primal and dual solutions

⇐⇒ x? and u?, v? satisfy the KKT conditions

(Warning, concerning the stationarity condition: for a differentiable
function f , we cannot use ∂f(x) = {∇f(x)} unless f is convex)
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What’s in a name?

Older folks will know these as the KT (Kuhn-Tucker) conditions:

• First appeared in publication by Kuhn and Tucker in 1951

• Later people found out that Karush had the conditions in his
unpublished master’s thesis of 1939

For unconstrained problems, the KKT conditions are nothing more
than the subgradient optimality condition

For general problems, the KKT conditions could have been derived
entirely from studying optimality via subgradients

0 ∈ ∂f(x?) +
m∑
i=1

N{hi≤0}(x?) +
r∑
j=1

N{`j=0}(x
?)

where recall NC(x) is the normal cone of C at x
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Example: quadratic with equality constraints

Consider for Q � 0,

min
x∈Rn

1

2
xTQx+ cTx

subject to Ax = 0

E.g., as we will see, this corresponds to Newton step for equality-
constrained problem min f(x) subject to Ax = b

Convex problem, no inequality constraints, so by KKT conditions:
x is a solution if and only if[

Q AT

A 0

] [
x
u

]
=

[
−c
0

]
for some u. Linear system combines stationarity, primal feasibility
(complementary slackness and dual feasibility are vacuous)
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Example: water-filling

Example from B & V page 245: consider problem

min
x∈Rn

−
n∑
i=1

log(αi + xi)

subject to x ≥ 0, 1Tx = 1

Information theory: think of log(αi + xi) as communication rate of
ith channel. KKT conditions:

−1/(αi + xi)− ui + v = 0, i = 1, . . . n

ui · xi = 0, i = 1, . . . n, x ≥ 0, 1Tx = 1, u ≥ 0

Eliminate u:

1/(αi + xi) ≤ v, i = 1, . . . n

xi(v − 1/(αi + xi)) = 0, i = 1, . . . n, x ≥ 0, 1Tx = 1
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Can argue directly stationarity and complementary slackness imply

xi =

{
1/v − αi if v < 1/αi

0 if v ≥ 1/αi
= max{0, 1/v−αi}, i = 1, . . . n

Still need x to be feasible, i.e., 1Tx = 1, and this gives

n∑
i=1

max{0, 1/v − αi} = 1

Univariate equation, piecewise linear in 1/v and not hard to solve

This reduced problem is
called water-filling

(From B & V page 246)

246 5 Duality

i

1/ν⋆
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Figure 5.7 Illustration of water-filling algorithm. The height of each patch is
given by αi. The region is flooded to a level 1/ν⋆ which uses a total quantity
of water equal to one. The height of the water (shown shaded) above each
patch is the optimal value of x⋆

i .
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l

w w

Figure 5.8 Two blocks connected by springs to each other, and the left and
right walls. The blocks have width w > 0, and cannot penetrate each other
or the walls.

5.5.4 Mechanics interpretation of KKT conditions

The KKT conditions can be given a nice interpretation in mechanics (which indeed,
was one of Lagrange’s primary motivations). We illustrate the idea with a simple
example. The system shown in figure 5.8 consists of two blocks attached to each
other, and to walls at the left and right, by three springs. The position of the
blocks are given by x ∈ R2, where x1 is the displacement of the (middle of the) left
block, and x2 is the displacement of the right block. The left wall is at position 0,
and the right wall is at position l.

The potential energy in the springs, as a function of the block positions, is given
by

f0(x1, x2) =
1

2
k1x

2
1 +

1

2
k2(x2 − x1)

2 +
1

2
k3(l − x2)

2,

where ki > 0 are the stiffness constants of the three springs. The equilibrium
position x⋆ is the position that minimizes the potential energy subject to the in-
equalities

w/2 − x1 ≤ 0, w + x1 − x2 ≤ 0, w/2 − l + x2 ≤ 0. (5.51)
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Example: support vector machines

Given y ∈ {−1, 1}n, and X ∈ Rn×p, the support vector machine
problem is:

min
β,β0,ξ

1

2
‖β‖22 + C

n∑
i=1

ξi

subject to ξi ≥ 0, i = 1, . . . n

yi(x
T
i β + β0) ≥ 1− ξi, i = 1, . . . n

Introduce dual variables v, w ≥ 0. KKT stationarity condition:

0 =

n∑
i=1

wiyi, β =

n∑
i=1

wiyixi, w = C1− v

Complementary slackness:

viξi = 0, wi
(
1− ξi − yi(xTi β + β0)

)
= 0, i = 1, . . . n
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Hence at optimality we have β =
∑n

i=1wiyixi, and wi is nonzero
only if yi(x

T
i β + β0) = 1− ξi. Such points i are called the support

points

• For support point i, if ξi = 0, then xi lies on edge of margin,
and wi ∈ (0, C];

• For support point i, if ξi 6= 0, then xi lies on wrong side of
margin, and wi = C418 12. Flexible Discriminants
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FIGURE 12.1. Support vector classifiers. The left panel shows the separable
case. The decision boundary is the solid line, while broken lines bound the shaded
maximal margin of width 2M = 2/∥β∥. The right panel shows the nonseparable
(overlap) case. The points labeled ξ∗

j are on the wrong side of their margin by
an amount ξ∗

j = Mξj; points on the correct side have ξ∗
j = 0. The margin is

maximized subject to a total budget
P

ξi ≤ constant. Hence
P

ξ∗
j is the total

distance of points on the wrong side of their margin.

Our training data consists of N pairs (x1, y1), (x2, y2), . . . , (xN , yN ), with
xi ∈ IRp and yi ∈ {−1, 1}. Define a hyperplane by

{x : f(x) = xT β + β0 = 0}, (12.1)

where β is a unit vector: ∥β∥ = 1. A classification rule induced by f(x) is

G(x) = sign[xT β + β0]. (12.2)

The geometry of hyperplanes is reviewed in Section 4.5, where we show that
f(x) in (12.1) gives the signed distance from a point x to the hyperplane
f(x) = xT β+β0 = 0. Since the classes are separable, we can find a function
f(x) = xT β + β0 with yif(xi) > 0 ∀i. Hence we are able to find the
hyperplane that creates the biggest margin between the training points for
class 1 and −1 (see Figure 12.1). The optimization problem

max
β,β0,∥β∥=1

M

subject to yi(x
T
i β + β0) ≥ M, i = 1, . . . , N,

(12.3)

captures this concept. The band in the figure is M units away from the
hyperplane on either side, and hence 2M units wide. It is called the margin.

We showed that this problem can be more conveniently rephrased as

min
β,β0

∥β∥

subject to yi(x
T
i β + β0) ≥ 1, i = 1, . . . , N,

(12.4)

KKT conditions do not really give
us a way to find solution, but gives
a better understanding

In fact, we can use this to screen
away non-support points before
performing optimization
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Constrained and Lagrange forms

Often in statistics and machine learning we’ll switch back and forth
between constrained form, where t ∈ R is a tuning parameter,

min f(x) subject to h(x) ≤ t (C)

and Lagrange form, where λ ≥ 0 is a tuning parameter,

min f(x) + λ · h(x) (L)

and claim these are equivalent. Is this true (assuming convex f, h)?

(C) to (L): if problem (C) is strictly feasible, then strong duality
holds, and there exists some λ ≥ 0 (dual solution) such that any
solution x? in (C) minimizes

f(x) + λ · (h(x)− t)

so x? is also a solution in (L)
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(L) to (C): if x? is a solution in (L), then the KKT conditions for
(C) are satisfied by taking t = h(x?), so x? is a solution in (C)

Conclusion:⋃
λ≥0
{solutions in (L)} ⊆

⋃
t

{solutions in (C)}
⋃
λ≥0
{solutions in (L)} ⊇

⋃
t such that (C)
is strictly feasible

{solutions in (C)}

This is nearly a perfect equivalence. Note: when the only value of
t that leads to a feasible but not strictly feasible constraint set is
t = 0, i.e.,

{x : h(x) ≤ t} 6= ∅, {x : h(x) < t} = ∅ ⇒ t = 0

(e.g., this is true if h is a norm) then we do get perfect equivalence
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Uniqueness in `1 penalized problems

Using the KKT conditions and simple probability arguments, we
have the following (perhaps surprising) result:

Theorem: Let f be differentiable and strictly convex, let X ∈
Rn×p, λ > 0. Consider

min
β∈Rp

f(Xβ) + λ‖β‖1
If the entries of X are drawn from a continuous probability dis-
tribution (on Rnp), then w.p. 1 there is a unique solution and it
has at most min{n, p} nonzero components

Remark: here f must be strictly convex, but no restrictions on the
dimensions of X (we could have p� n)

Proof: the KKT conditions are

−XT∇f(Xβ) = λs, si ∈
{
{sign(βi)} if βi 6= 0

[−1, 1] if βi = 0
, i = 1, . . . n
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Note that Xβ, s are unique. Define S = {j : |XT
j ∇f(Xβ)| = λ},

also unique, and note that any solution satisfies βi = 0 for all i /∈ S

First assume that rank(XS) < |S| (here X ∈ Rn×|S|, submatrix of
X corresponding to columns in S). Then for some i ∈ S,

Xi =
∑

j∈S\{i}

cjXj

for constants cj ∈ R, hence

siXi =
∑

j∈S\{i}

(sisjcj) · (sjXj)

Taking an inner product with −∇f(Xβ),

λ =
∑

j∈S\{i}

(sisjcj)λ, i.e.,
∑

j∈S\{i}

sisjcj = 1
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In other words, we’ve proved that rank(XS) < |S| implies siXi is
in the affine span of sjXj , j ∈ S \ {i} (subspace of dimension < n)

We say that the matrix X has columns in general position if any
affine subspace L of dimension k < n does not contain more than
k + 1 elements; of {±X1, . . .±Xp} (excluding antipodal pairs)

It is straightforward to show that, if the entries of X have a
density over Rnp, then X is in general position with probability 1

●

●

●

●

●

●

●

X1

X2

X3

X4
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Therefore, if entries of X are drawn from continuous probability
distribution, any solution must satisfy rank(XS) = |S|

Recalling the KKT conditions, this means the number of nonzero
components in any solution at most ≤ |S| ≤ min{n, p}. Further,
we can reduce our optimization problem (by partially solving) to

min
βS∈R|S|

f(XSβS) + λ‖βS‖1

Finally, strict convexity implies uniqueness of the solution in this
problem, and hence in our original problem
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Back to duality

One of the most important uses of duality is that, under strong
duality, we can characterize primal solutions from dual solutions

Recall that under strong duality, the KKT conditions are necessary
for optimality. Given dual solutions u?, v?, any primal solution x?

satisfies the stationarity condition

0 ∈ ∂f(x?) +
m∑
i=1

u?i ∂hi(x
?) +

r∑
j=1

v?i ∂`j(x
?)

In other words, x? solves minx L(x, u
?, v?)

• Generally, this reveals a characterization of primal solutions

• In particular, if this is satisfied uniquely (i.e., above problem
has a unique minimizer), then the corresponding point must
be the primal solution
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