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Last time: duality

Given a minimization problem

min f(x)
subject to  h;i(x) <0, i=1,...m
Ej(l‘) :0, ] = 1,...7“
we defined the Lagrangian:
L(z,u,v) = f(z) + Zuzhz(x) + quj@] (x)
i=1 j=1

and Lagrange dual function:

g(u,v) =min L(x,u,v)



The subsequent dual problem is:
max g(u,v)
u,v

subject to uw >0

Important properties:
e Dual problem is always convex, i.e., g is always concave (even
if primal problem is not convex)
e The primal and dual optimal values, f* and g*, always satisfy
weak duality: f* > g*
e Slater's condition: for convex primal, if there is an x such that

hi(x) <0,...hp(z) <0 and #1(x)=0,...0.(x)=0

then strong duality holds: f* = ¢g*. (Can be further refined to
strict inequalities over the nonaffine h;, i = 1,...m)



Outline

Today:
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Karush-Kuhn-Tucker conditions

Given general problem

min f(x)
subject to  hi(z) <0, i=1,...m
Ej(l‘):(), j:1,...7“

The Karush-Kuhn-Tucker conditions or KKT conditions are:

e 0€df(x)+ Z w;Ohi(x) + Z v;0l;(x) (stationarity)
i1 =1

e u;-hi(x) =0 for all i (complementary slackness)

e hi(z) <0, £j(x) =0 for all 4, (primal feasibility)

e u; >0 forall ¢ (dual feasibility)



Necessity

Let 2* and u*, v* be primal and dual solutions with zero duality
gap (strong duality holds, e.g., under Slater’s condition). Then

f@®) = g(u”, v")

= mln fz)+ Zu*h + Zv]*ﬁj(x)
j=1
z*) + Z uphi(2*) + Z vili(x*
i=1 j=1

< f(x¥)

In other words, all these inequalities are actually equalities



Two things to learn from this:

e The point * minimizes L(z,u*,v*) over x € R™. Hence the
subdifferential of L(z,u*,v*) must contain 0 at x = 2*—this
is exactly the stationarity condition

e We must have > " | urh;(z*) = 0, and since each term here
is < 0, this implies uh;(x*) = 0 for every i—this is exactly
complementary slackness

Primal and dual feasibility hold by virtue of optimality. Therefore:

If * and w*,v* are primal and dual solutions, with zero duality
gap, then x*, u*, v* satisfy the KKT conditions

(Note that this statement assumes nothing a priori about convexity
of our problem, i.e., of f,h;, ;)



Sufficiency

If there exists x*, u*, v* that satisfy the KKT conditions, then

gur,v*) = f(2*) + ) ulhi(at) + > vt (@)
i=1 j=1
= f(a*)

where the first equality holds from stationarity, and the second
holds from complementary slackness

Therefore the duality gap is zero (and x* and u*,v* are primal and
dual feasible) so x* and u*,v* are primal and dual optimal. Hence,
we've shown:

If * and u*, v* satisfy the KKT conditions, then x* and u*, v*
are primal and dual solutions




Putting it together

In summary, KKT conditions:
e always sufficient

e necessary under strong duality

Putting it together:

For a problem with strong duality (e.g., assume Slater’s condi-
tion: convex problem and there exists x strictly satisfying non-
affine inequality contraints),

x* and u*,v* are primal and dual solutions

<= z* and u*,v"* satisfy the KKT conditions

(Warning, concerning the stationarity condition: for a differentiable
function f, we cannot use df(x) = {V f(z)} unless f is convex)



What's in a name?

Older folks will know these as the KT (Kuhn-Tucker) conditions:
e First appeared in publication by Kuhn and Tucker in 1951

e Later people found out that Karush had the conditions in his
unpublished master’s thesis of 1939

For unconstrained problems, the KKT conditions are nothing more
than the subgradient optimality condition

For general problems, the KKT conditions could have been derived
entirely from studying optimality via subgradients

0€df(x +ZN{h <oy +ZN{%—0} ")

=1 7=1

where recall No(x) is the normal cone of C' at z
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Example: quadratic with equality constraints

Consider for Q) = 0,

) 1
min —2TQr + cTx
zeR? 2

subject to Az =0

E.g., as we will see, this corresponds to Newton step for equality-
constrained problem min f(z) subject to Az =10

Convex problem, no inequality constraints, so by KKT conditions:
x is a solution if and only if

Q AT x| | —c

A 0 wl | O
for some w. Linear system combines stationarity, primal feasibility
(complementary slackness and dual feasibility are vacuous)
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Example: water-filling

Example from B & V page 245: consider problem

n
min 2_; og(v + 1)
subject to x>0, 1Tz =1

Information theory: think of log(c; + x;) as communication rate of
1th channel. KKT conditions:

/(i +x)) —ui+v=0, i=1,...n

w-x; =0, i=1,...n, >0, 1Tz=1, v>0
Eliminate wu:

/(i +x) <wv, i=1,...n
zi(v—1/(a; +2;)) =0, i=1,...n, >0, 1Tz=1
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Can argue directly stationarity and complementary slackness imply

Ijv—o; ifv<l/oa
o Jv— i it Jai max{0,1/v—a;}, i=1,...n
0 if v>1/q

Still need z to be feasible, i.e., 172 = 1, and this gives
n
Zmax{o, 1/v—a;i} =1
i=1

Univariate equation, piecewise linear in 1/v and not hard to solve

This reduced problem is
called water-filling 1/v*

Z;

(From B & V page 246) @
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Example: support vector machines

Given y € {—1,1}", and X € R™*P, the support vector machine
problem is:

1 n
min SI1813 + C;&
subject to & >0, i=1,...n
yi(zfB+By) >1—¢&,i=1,...n

Introduce dual variables v, w > 0. KKT stationarity condition:

n n

0=> wwyi, B=Y wiri;, w=Cl—y
i=1 i=1

Complementary slackness:

vi& =0, wi(1 - & —yi(x] B+ By)) =0, i=1,...n
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Hence at optimality we have 3 = Y | w;y;xz;, and w; is nonzero
only if y;(z7 8+ o) = 1 — &. Such points i are called the support
points
e For support point ¢, if £ = 0, then z; lies on edge of margin,
and w; € (0,C];
e For support point 4, if & # 0, then x; lies on wrong side of
margin, and w; = C

2B+ o =0

KKT conditions do not really give
us a way to find solution, but gives
a better understanding

In fact, we can use this to screen
away non-support points before
performing optimization
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Constrained and Lagrange forms

Often in statistics and machine learning we'll switch back and forth
between constrained form, where ¢t € R is a tuning parameter,

min f(z) subject to h(z) <t (Q)

and Lagrange form, where A\ > 0 is a tuning parameter,
min f(x) 4+ A h(x) (L)
and claim these are equivalent. Is this true (assuming convex f, h)?

(C) to (L): if problem (C) is strictly feasible, then strong duality
holds, and there exists some A > 0 (dual solution) such that any
solution z* in (C) minimizes

f@)+ - (h(x) =)

so x* is also a solution in (L)
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(L) to (C): if z* is a solution in (L), then the KKT conditions for
(C) are satisfied by taking t = h(z*), so 2* is a solution in (C)

Conclusion:
U {solutions in (L)} - U {solutions in (C)}
A>0 t
U {solutions in (L)} 2 U {solutions in (C)}
A>0 t such that (C)

is strictly feasible

This is nearly a perfect equivalence. Note: when the only value of
t that leads to a feasible but not strictly feasible constraint set is
t=20, ie.,

{z:h(z) <t} #0, {z:h(z)<t}=0 = ¢t=0

(e.g., this is true if h is a norm) then we do get perfect equivalence
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Uniqueness in ¢ penalized problems

Using the KKT conditions and simple probability arguments, we
have the following (perhaps surprising) result:

Theorem: Let f be differentiable and strictly convex, let X €
R"*P X\ > 0. Consider

min f(X8) + MBI

If the entries of X are drawn from a continuous probability dis-
tribution (on R™P), then w.p. 1 there is a unique solution and it
has at most min{n, p} nonzero components

Remark: here f must be strictly convex, but no restrictions on the
dimensions of X (we could have p > n)

Proof: the KKT conditions are

_xT _ _J{sien(B)} i BiAO0
XTV(XB) = As, sze{[_u] g Pl
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Note that X3, s are unique. Define S = {j: |XjTVf(Xﬁ)| = A},
also unique, and note that any solution satisfies §; = 0 for all i ¢ S

First assume that rank(Xg) < |S| (here X € R™*ISI, submatrix of
X corresponding to columns in S). Then for some i € S,

Xi = Z Cij
jes\{i}
for constants ¢; € R, hence
siXi= Y (sisje)) - (s;X;)
jes\{i}
Taking an inner product with —V f(X3),

A= Z (SZ‘S]‘C]‘))\, i.e., Z SiSjCj:1

jES\{i} jes\{i}
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In other words, we've proved that rank(Xg) < |S| implies s; X is
in the affine span of s;X;, j € S\ {i} (subspace of dimension < n)

We say that the matrix X has columns in general position if any
affine subspace L of dimension & < n does not contain more than
k + 1 elements; of {£X;,... £ X} (excluding antipodal pairs)

It is straightforward to show that, if the entries of X have a
density over R™, then X is in general position with probability 1

» X3
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Therefore, if entries of X are drawn from continuous probability
distribution, any solution must satisfy rank(Xg) = |5

Recalling the KKT conditions, this means the number of nonzero
components in any solution at most < |S| < min{n, p}. Further,
we can reduce our optimization problem (by partially solving) to

min_ f(XsBs) + ABs]li
Bs€ERISI

Finally, strict convexity implies uniqueness of the solution in this
problem, and hence in our original problem

O
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Back to duality

One of the most important uses of duality is that, under strong
duality, we can characterize primal solutions from dual solutions

Recall that under strong duality, the KKT conditions are necessary
for optimality. Given dual solutions u*, v*, any primal solution x*
satisfies the stationarity condition

0€df(x +Zu*8h +Zv*ae

In other words, z* solves min, L(x, u*, v*)

e Generally, this reveals a characterization of primal solutions

e In particular, if this is satisfied uniquely (i.e., above problem
has a unique minimizer), then the corresponding point must
be the primal solution
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