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Last time: KKT conditions

Recall that for the problem

min f(x)

subject to hi(x) ≤ 0, i = 1, . . .m

`j(x) = 0, j = 1, . . . r

the KKT conditions are

• 0 ∈ ∂f(x) +
m∑

i=1

ui∂hi(x) +

r∑

j=1

vi∂`j(x) (stationarity)

• ui · hi(x) = 0 for all i (complementary slackness)

• hi(x) ≤ 0, `j(x) = 0 for all i, j (primal feasibility)

• ui ≥ 0 for all i (dual feasibility)

These are necessary for optimality (of a primal-dual pair x? and
u?, v?) under strong duality, and always sufficient
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Uses of duality

Two key uses of duality:

• For x primal feasible and u, v dual feasible,

f(x)− g(u, v)

is called the duality gap between x and u, v. Since

f(x)− f(x?) ≤ f(x)− g(u, v)

a zero duality gap implies optimality. Also, the duality gap
can be used as a stopping criterion in algorithms

• Under strong duality, given dual optimal u?, v?, any primal
solution minimizes L(x, u?, v?) over all x (i.e., it satisfies
stationarity condition). This can be used to characterize or
compute primal solutions
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Solving the primal via the dual

An important consequence of stationarity: under strong duality,
given a dual solution u?, v?, any primal solution x? solves

min
x

f(x) +

m∑

i=1

u?ihi(x) +

r∑

j=1

v?i `j(x)

Often, solutions of this unconstrained problem can be expressed
explicitly, giving an explicit characterization of primal solutions
from dual solutions

Furthermore, suppose the solution of this problem is unique; then
it must be the primal solution x?

This can be very helpful when the dual is easier to solve than the
primal
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Example from B & V page 249:

min
x

n∑

i=1

fi(xi) subject to aTx = b

where each fi : R→ R is smooth, strictly convex. Dual function:

g(v) = min
x

n∑

i=1

fi(xi) + v(b− aTx)

= bv +
n∑

i=1

min
xi∈R

(
fi(xi)− aivxi

)

= bv −
n∑

i=1

f∗i (aiv)

where f∗i is the conjugate of fi, to be defined shortly
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Therefore the dual problem is

max
v∈R

bv −
n∑

i=1

f∗i (aiv)

or equivalently

min
v∈R

n∑

i=1

f∗i (aiv)− bv

This is a convex minimization problem with scalar variable—much
easier to solve than primal

Given v?, the primal solution x? solves

min
x

n∑

i=1

(fi(xi)− aiv?xi)

Strict convexity of each fi implies that this has a unique solution,
namely x?, which we compute by solving ∇fi(xi) = aiv

? for each i
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Outline

Today:

• Dual norms

• Conjugate functions

• Dual cones

• Dual tricks and subtleties

(Note: there are many other uses of duality and relationships to
duality that we could discuss, but not enough time...)
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Dual norms

Let ‖x‖ be a norm, e.g.,

• `p norm: ‖x‖p = (
∑n

i=1 |xi|p)1/p, for p ≥ 1

• Trace norm: ‖X‖tr =
∑r

i=1 σi(X)

We define its dual norm ‖x‖∗ as

‖x‖∗ = max
‖z‖≤1

zTx

Gives us the inequality |zTx| ≤ ‖z‖‖x‖∗, like Cauchy-Schwartz.
Back to our examples,

• `p norm dual: (‖x‖p)∗ = ‖x‖q, where 1/p+ 1/q = 1

• Trace norm dual: (‖X‖tr)∗ = ‖X‖op = σ1(X)

Dual norm of dual norm: can show that ‖x‖∗∗ = ‖x‖
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Conjugate function

Given a function f : Rn → R, define its conjugate f∗ : Rn → R,

f∗(y) = max
x

yTx− f(x)

Note that f∗ is always convex, since it is the pointwise maximum
of convex (affine) functions in y (f need not be convex)3.3 The conjugate function 91

f(x)

(0, −f∗(y))

xy

x

Figure 3.8 A function f : R → R, and a value y ∈ R. The conjugate
function f∗(y) is the maximum gap between the linear function yx and
f(x), as shown by the dashed line in the figure. If f is differentiable, this
occurs at a point x where f ′(x) = y.

3.3.1 Definition and examples

Let f : Rn → R. The function f∗ : Rn → R, defined as

f∗(y) = sup
x∈dom f

(
yT x − f(x)

)
, (3.18)

is called the conjugate of the function f . The domain of the conjugate function
consists of y ∈ Rn for which the supremum is finite, i.e., for which the difference
yT x − f(x) is bounded above on dom f . This definition is illustrated in figure 3.8.

We see immediately that f∗ is a convex function, since it is the pointwise
supremum of a family of convex (indeed, affine) functions of y. This is true whether
or not f is convex. (Note that when f is convex, the subscript x ∈ dom f is not
necessary since, by convention, yT x − f(x) = −∞ for x ̸∈ dom f .)

We start with some simple examples, and then describe some rules for conjugat-
ing functions. This allows us to derive an analytical expression for the conjugate
of many common convex functions.

Example 3.21 We derive the conjugates of some convex functions on R.

• Affine function. f(x) = ax + b. As a function of x, yx − ax − b is bounded if
and only if y = a, in which case it is constant. Therefore the domain of the
conjugate function f∗ is the singleton {a}, and f∗(a) = −b.

• Negative logarithm. f(x) = − log x, with dom f = R++. The function xy+log x
is unbounded above if y ≥ 0 and reaches its maximum at x = −1/y otherwise.
Therefore, dom f∗ = {y | y < 0} = −R++ and f∗(y) = − log(−y)−1 for y < 0.

• Exponential. f(x) = ex. xy − ex is unbounded if y < 0. For y > 0, xy − ex

reaches its maximum at x = log y, so we have f∗(y) = y log y − y. For y = 0,

f∗(y) : maximum gap between
linear function yTx and f(x)

(From B & V page 91)

For differentiable f , conjugation is called the Legendre transform
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Properties:

• Fenchel’s inequality: for any x, y,

f(x) + f∗(y) ≥ xT y

• Hence conjugate of conjugate f∗∗ satisfies f∗∗ ≤ f
• If f is closed and convex, then f∗∗ = f

• If f is closed and convex, then for any x, y,

x ∈ ∂f∗(y) ⇐⇒ y ∈ ∂f(x)
⇐⇒ f(x) + f∗(y) = xT y

• If f(u, v) = f1(u) + f2(v) (here u ∈ Rn, v ∈ Rm), then

f∗(w, z) = f∗1 (w) + f∗2 (z)
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Examples:

• Simple quadratic: let f(x) = 1
2x

TQx, where Q � 0. Then
yTx− 1

2x
TQx is strictly concave in y and is maximized at

y = Q−1x, so

f∗(y) =
1

2
yTQ−1y

Note that Fenchel’s inequality gives:

1

2
xTQx+

1

2
yTQ−1y ≥ xT y

• Indicator function: if f(x) = IC(x), then its conjugate is

f∗(y) = I∗C(y) = max
x∈C

yTx

called the support function of C
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• Norm: if f(x) = ‖x‖, then its conjugate is

f∗(y) = I{z : ‖z‖∗≤1}(y)

where ‖ · ‖∗ is the dual norm of ‖ · ‖

Why? Note that if ‖y‖∗ > 1, then there exists ‖z‖ ≤ 1 with
zT y = ‖y‖∗ > 1, so

(tz)T y − ‖tz‖ = t(zT y − ‖z‖)→∞, as t→∞

i.e., f∗(y) =∞

On the other hand, if ‖y‖∗ ≤ 1, then

zT y − ‖z‖ ≤ ‖z‖‖y‖∗ − ‖z‖ ≤ 0

and = 0 when z = 0, so f∗(y) = 0
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Example: lasso dual

Given y ∈ Rn, X ∈ Rn×p, recall the lasso problem:

min
β∈Rp

1

2
‖y −Xβ‖22 + λ‖β‖1

Its dual function is just a constant (equal to f?). Therefore we
transform the primal to

min
β∈Rp, z∈Rn

1

2
‖y − z‖22 + λ‖β‖1 subject to z = Xβ

so dual function is now

g(u) = min
β∈Rp, z∈Rn

1

2
‖y − z‖22 + λ‖β‖1 + uT (z −Xβ)

=
1

2
‖y‖22 −

1

2
‖y − u‖22 − I{v : ‖v‖∞≤1}(XTu/λ)
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Therefore the lasso dual problem is

max
u∈Rn

1

2

(
‖y‖22 − ‖y − u‖22

)
subject to ‖XTu‖∞ ≤ λ

or equivalently

min
u∈Rn

‖y − u‖22 subject to ‖XTu‖∞ ≤ λ

Check: Slater’s condition holds, and hence so does strong duality.
But note: the optimal value of the last problem is not the optimal
lasso objective value

Further, note that given the dual solution u, any lasso solution β
satisfies

Xβ = y − u
This is from KKT stationarity condition for z (i.e., z − y + β = 0).
So the lasso fit is just the dual residual
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y

C = {u : ‖XT u‖∞ ≤ λ}

Xβ̂

0
0

û

{v : ‖v‖∞ ≤ λ}

A, sA

(XT )−1

Rn Rp

1
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Conjugates and dual problems

Conjugates appear frequently in derivation of dual problems, via

−f∗(u) = min
x

f(x)− uTx

in minimization of the Lagrangian. E.g., consider

min
x

f(x) + g(x)

⇐⇒ min
x,z

f(x) + g(z) subject to x = z

Lagrange dual function:

g(u) = min
x

f(x) + g(z) + uT (z − x) = −f∗(u)− g∗(−u)

Hence dual problem is

max
u
−f∗(u)− g∗(−u)
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Examples of this last calculation:

• Indicator function: dual of

min
x

f(x) + IC(x)

is
max
u
−f∗(u)− I∗C(−u)

where I∗C is the support function of C

• Norms: the dual of

min
x

f(x) + ‖x‖

is
max
u
−f∗(u) subject to ‖u‖∗ ≤ 1

where ‖ · ‖∗ is the dual norm of ‖ · ‖
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Dual cones

For a cone K ⊆ Rn (recall this means x ∈ K, t ≥ 0 =⇒ tx ∈ K),

K∗ = {y ∈ Rn : yTx ≥ 0 for all x ∈ K}

is called its dual cone. This is always a convex cone (even if K is
not convex)

52 2 Convex sets

K Ky

z

Figure 2.22 Left. The halfspace with inward normal y contains the cone K,
so y ∈ K∗. Right. The halfspace with inward normal z does not contain K,
so z ̸∈ K∗.

Example 2.23 Nonnegative orthant. The cone Rn
+ is its own dual:

xT y ≥ 0 for all x ≽ 0 ⇐⇒ y ≽ 0.

We call such a cone self-dual.

Example 2.24 Positive semidefinite cone. On the set of symmetric n × n matrices
Sn, we use the standard inner product tr(XY ) =

∑n

i,j=1
XijYij (see §A.1.1). The

positive semidefinite cone Sn
+ is self-dual, i.e., for X, Y ∈ Sn,

tr(XY ) ≥ 0 for all X ≽ 0 ⇐⇒ Y ≽ 0.

We will establish this fact.

Suppose Y ̸∈ Sn
+. Then there exists q ∈ Rn with

qT Y q = tr(qqT Y ) < 0.

Hence the positive semidefinite matrix X = qqT satisfies tr(XY ) < 0; it follows that
Y ̸∈ (Sn

+)∗.

Now suppose X, Y ∈ Sn
+. We can express X in terms of its eigenvalue decomposition

as X =
∑n

i=1
λiqiq

T
i , where (the eigenvalues) λi ≥ 0, i = 1, . . . , n. Then we have

tr(Y X) = tr

(
Y

n∑

i=1

λiqiq
T
i

)
=

n∑

i=1

λiq
T
i Y qi ≥ 0.

This shows that Y ∈ (Sn
+)∗.

Example 2.25 Dual of a norm cone. Let ∥ · ∥ be a norm on Rn. The dual of the
associated cone K = {(x, t) ∈ Rn+1 | ∥x∥ ≤ t} is the cone defined by the dual norm,
i.e.,

K∗ = {(u, v) ∈ Rn+1 | ∥u∥∗ ≤ v},

Note that y ∈ K∗ ⇐⇒
the halfspace {x ∈ Rn :
yTx ≥ 0} contains K

(From B & V page 52)

Important property: if K is a closed convex cone, then K∗∗ = K
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Examples:

• Linear subspace: the dual cone of a linear subspace V is V ⊥,
its orthogonal complement. E.g., (row(A))∗ = null(A)

• Norm cone: the dual cone of the norm cone

K = {(x, t) ∈ Rn+1 : ‖x‖ ≤ t}

is the norm cone of its dual norm

K∗ = {(y, s) ∈ Rn+1 : ‖y‖∗ ≤ s}

• Positive semidefinite cone: the convex cone Sn+ is self-dual,
meaning (Sn+)∗ = Sn+. Why? Check that

Y � 0 ⇐⇒ tr(Y X) ≥ 0 for all X � 0

by looking at the eigenvalue decomposition of X
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Dual cones and dual problems

Consider the cone constrained problem

min
x∈K

f(x)

Recall that its dual problem is

max
u∈Rn

−f∗(u)− I∗K(−u)

where recall I∗K(y) = maxz∈K z
T y, the support function of K. If

K is a cone, then this is simply

max
u∈K∗

−f∗(u)

where K∗ is the dual cone of K, because I∗K(−u) = IK∗(u)

This is quite a useful observation, because many different types of
constraints can be posed as cone constraints
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Dual subtleties

• Often, we will transform the dual into an equivalent problem
and still call this the dual. Under strong duality, we can use
solutions of the (transformed) dual problem to characterize or
compute primal solutions

Warning: the optimal value of this transformed dual problem
is not necessarily the optimal primal value

• A common trick in deriving duals for unconstrained problems
is to first transform the primal by adding a dummy variable
and an equality constraint

Usually there is ambiguity in how to do this, and different
choices lead to different dual problems!
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Double dual

Consider general minimization problem with linear constraints:

min
x

f(x)

subject to Ax ≤ b, Cx = d

The Lagrangian is

L(x, u, v) = f(x) + (ATu+ CT v)Tx− bTu− dT v

and hence the dual problem is

max
u,v

−f∗(−ATu− CT v)− bTu− dT v

subject to u ≥ 0

Recall property: f∗∗ = f if f is closed and convex. Hence in this
case, we can show that the dual of the dual is the primal
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Actually, the connection (between duals of duals and conjugates)
runs much deeper than this, beyond linear constraints. Consider

min f(x)

subject to hi(x) ≤ 0, i = 1, . . .m

`j(x) = 0, j = 1, . . . r

If f and h1, . . . hm are closed and convex, and `1, . . . `r are affine,
then the dual of the dual is the primal

This is proved by viewing the minimization problem in terms of a
bifunction. In this framework, the dual function corresponds to the
conjugate of this bifunction (for more, read Chapters 29 and 30 of
Rockafellar)
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