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Last time: barrier method

Approximate

min f(x)

subject to hi(x) ≤ 0, i = 1, . . .m

Ax = b

with

min tf(x) + φ(x)

subject to Ax = b

where φ is the log-barrier function

φ(x) = −
m∑
i=1

log(−hi(x)).
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Barrier method

Solve a sequence of problems

min tf(x) + φ(x)

subject to Ax = b

for increasing values of t > 0, until m/t ≤ ε.

Start with t = t(0) > 0, and solve the above problem using
Newton’s method to produce x(0) = x?(t).

For k = 1, 2, 3, . . .

• Solve the barrier problem at t = t(k), using Newton’s method
initialized at x(k−1), to produce x(k) = x?(t)

• Stop if m/t ≤ ε
• Else update t(k+1) = µt, where µ > 1
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Outline

Today:

• Recap of linear programming and duality

• The central path

• Feasible path-following interior-point methods

• Infeasible interior-point methods
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Linear program in standard form

Problem of the form

min
x

cTx

subject to Ax = b

x ≥ 0,

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn.

Recall: Any linear program can be rewritten in standard form.

Standard assumption: A is full row-rank.
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Linear programming duality

The dual of the above problem is

max
y

bTy

subject to ATy ≤ c.

Or equivalently

max
y,s

bTy

subject to ATy + s = c

s ≥ 0.

Throughout the sequel refer to the LP from the previous slide as
the primal problem and to the above LP as the dual problem.
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Linear programming duality

Theorem (Weak duality)

Assume x is primal feasible and y is dual feasible. Then

bTy ≤ cTx.

Theorem (Strong duality)

Assume primal LP is feasible. Then it is bounded if and only if the
dual is feasible. In that case their optimal values are the same and
they are attained.
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Optimality conditions

The points x∗ and (y∗, s∗) are respectively primal and dual optimal
solutions if and only if (x∗, y∗, s∗) solves

Ax = b

ATy + s = c

xjsj = 0, j = 1, . . . , n

x, s ≥ 0.

Two main classes of algorithms for linear programming

Simplex method: Maintain first three conditions and aim for the
fourth one.

Interior-point methods: Maintain first two and the fourth
conditions and aim for the third one.
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Some history
• Dantzig (1940s): the simplex method. Still one of the most

popular algorithms for linear programming.

• Klee and Minty (1960s): LP with n variables and 2n
constraints that the simplex method needs to perform 2n

iterations to solve.

• Khachiyan (1979): first polynomial-time algorithm for LP
based on the ellipsoid method of Nemirovski and Yudin
(1976). Theoretically strong but computationally weak.

• Karmarkar (1984): first interior-point polynomial-time
algorithm for LP.

• Renegar (1988): Newton-based interior-point algorithm for
LP. Best known theoretical complexity to date.

• Modern state-of-the-art LP solvers typically use both simplex
and interior-point methods.
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Barrier method for primal and dual problems

Pick τ > 0. Approximate the LP primal with

min
x

cTx− τ
n∑
j=1

log xj

subject to Ax = b

and the LP dual with

max
y,s

bTy + τ

n∑
j=1

log sj

subject to ATy + s = c.

Neat fact:
The above two problems are, modulo a constant, Lagrangian duals
of each other.

10



Primal-dual central path

Assume the primal and dual problems are strictly feasible. The
primal-dual central path is the set

{(x(τ), y(τ), s(τ)) : τ > 0}

where x(τ), and (y(τ), s(τ)) solve the above pair of barrier
problems. Equivalently, (x(τ), y(τ), s(τ)) is the solution to

Ax = b

ATy + s = c

xjsj = τ, j = 1, . . . , n

x, s > 0.
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Path following interior-point methods

Main idea: Generate (xk, yk, sk) ≈ (x(τk), y(τk), s(τk)) for τk ↓ 0.

Key details:

• Proximity to the central path

• Decrease τk

• Update (xk, yk, sk)
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Neighborhoods of the central path

Notation:

• F0 := {(x, y, s) : Ax = b, ATy + s = c, x, s > 0}.
• For x, s ∈ Rn, X := diag(x), S := diag(s).

• Given x, s ∈ Rn+, µ(x, s) := xTs
n

For θ ∈ (0, 1), two-norm neighborhood:

N2(θ) := {(x, y, s) ∈ F0 : ‖XS1− µ(x, s)1‖2 ≤ θµ(x, s)}

For γ ∈ (0, 1), one-sided infinity-norm neighborhood:

N−∞(γ) := {(x, y, s) ∈ F0 : xisi ≥ γµ(x, s), i = 1, . . . , n}
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Newton step

Recall: (x(τ), y(τ), s(τ)) solution toATy + s− c
Ax− b
XS1

 =

 0
0
τ1

 , x, s > 0.

Newton step equations:0 AT I
A 0 0
S 0 X

∆x
∆y
∆s

 =

 0
0

τ1−XS1

 .

14



Short-step path following algorithm

Algorithm SPF

1. Let θ, δ ∈ (0, 1) be such that θ2+δ2

23/2(1−θ) ≤
(

1− δ√
n

)
θ.

2. Let (x0, y0, s0) ∈ N2(θ).

3. For k = 0, 1, . . .

I Compute Newton step for

(x, y, s) = (xk, yk, sk), τ =
(

1− δ√
n

)
µ(x, s).

I Set (xk+1, yk+1, sk+1) := (xk, yk, sk) + (∆x,∆y,∆s).
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Theorem
The sequence generated by Algorithm SPF satisfies

(xk, yk, sk) ∈ N2(θ),

and

µ(xk+1, sk+1) =

(
1− δ√

n

)
µ(xk, sk)

Corollary

In O
(√

n log
(
nµ(x0,s0)

ε

))
the algorithm yields (xk, yk, sk) ∈ F0

such that
cTxk − bTyk ≤ ε.
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Long-step path following algorithm

Algorithm LPF

1. Choose γ ∈ (0, 1) and 0 < σmin < σmax < 1

2. Let (x0, y0, s0) ∈ N−∞(γ)

3. For k = 0, 1, . . .
I Choose σ ∈ [σmin, σmax]

I Compute Newton step for

(x, y, s) = (xk, yk, sk), τ = σµ(xk, sk)

I Choose αk as the largest α ∈ [0, 1] such that

(xk, yk, sk) + α(∆x,∆y,∆s) ∈ N−∞(γ)

I Set (xk+1, yk+1, sk+1) := (xk, yk, sk) + αk(∆x,∆y,∆s)
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Theorem
The sequence generated by Algorithm LPF satisfies

(xk, yk, sk) ∈ N−∞(γ),

and

µ(xk+1, sk+1) ≤
(

1− δ

n

)
µ(xk, sk)

for some constant δ that depends on γ, σmin, σmax but not on n.

Corollary

In O
(
n log

(
nµ(x0,s0)

ε

))
the algorithm yields (xk, yk, sk) ∈ F0

such that
cTxk − bTyk ≤ ε.
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Infeasible interior-point algorithms
Algorithms SPF and LPF require an initial point in F0.

Can we eliminate this requirement?

Given (x, y, s), let rb := Ax− b, rc := ATy + s− c.

Assume (x0, y0, s0) with x0, s0 > 0 is given. Extend N−∞(γ) to

N−∞(γ, β) := {(x, y, s) :‖(rb, rc)‖ ≤ [‖(r0b , r0c )‖/µ0]βµ,
x, s > 0, xisi ≥ γµ, i = 1, . . . , n}

for γ ∈ (0, 1), β ≥ 1.

Newton step equations:0 AT I
A 0 0
S 0 X

∆x
∆y
∆s

 = −

 rc
rb

XS1− τ1

 .
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Algorithm IPF

1. Choose γ ∈ (0, 1), 0 < σmin < σmax < 0.5, and β ≥ 1.

2. Choose (x0, y0, s0) with x0, s0 > 0

3. For k = 0, 1, . . .
I Choose σ ∈ [σmin, σmax]

I Compute Newton step for

(x, y, s) = (xk, yk, sk), τ = σµ(xk, sk)

I Choose αk as the largest α ∈ [0, 1] such that

(xk, yk, sk) + α(∆x,∆y,∆s) ∈ N−∞(γ, β)

and

µ(xk + α∆x, sk + α∆s) ≤ (1− 0.01α)µ(xk, sk)

I Set (xk+1, yk+1, sk+1) := (xk, yk, sk) + αk(∆x,∆y,∆s)
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Theorem
Assume the primal and dual problems have optimal solutions.
Then the sequence (xk, yk, sk), k = 0, 1, . . . generated by
Algorithm IPF satisfies

µk := µ(xk, yk, sk)→ 0 linearly.

In particular
‖(rkb , rkc )‖ → 0 R-linearly.

——————————————————————————–
Remark: ak → 0 R-linearly ⇔ |ak| ≤ bk and bk → 0 linearly.
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IPM for more general convex optimization

Consider a convex minimization problem

min f(x)

subject to h(x) ≤ 0

Ax = b.

Assume f, h smooth and strong duality holds. Then x∗ and
(u∗, v∗) are respectively primal and dual optimal solutions if and
only if (x∗, u∗, v∗) solves the KKT conditions

∇f(x) +ATv +∇h(x)u = 0

Uh(x) = 0

Ax = b

u,−h(x) ≥ 0.
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Central path and Newton step

Central path:
{(x(τ), u(τ), v(τ)) : τ > 0} where (x(τ), u(τ), v(τ)) solves

∇f(x) +ATv +∇h(x)u = 0

Uh(x) = −τ1
Ax = b

u,−h(x) > 0.

Newton step:∇2f(x) +
∑

i ui∇2hi(x) ∇h(x) AT

U∇h(x)T H(x) 0
A 0 0

∆x
∆u
∆v

 = −

rdualrcent
rpri

 ,
rdual = ∇f(x)+ATv+∇h(x)u, rcent = Uh(x)+τ1, rpri = Ax−b.
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Given x, u such that h(x) ≤ 0, u ≥ 0, define µ(x, u) := −h(x)Tu
m .

Primal-Dual Algorithm

1. Choose σ ∈ (0, 1)

2. Choose (x0, u0, v0) such that h(x0) < 0, u0 > 0

3. For k = 0, 1, . . .
I Compute Newton step for

(x, u, v) = (xk, uk, vk), τ := σµ(xk, uk)

I Choose steplength αk via line-search and set

(xk+1, uk+1, vk+1) := (xk, uk, vk) + αk(∆x,∆u,∆v)

——————————————————————————–
Line-search:
Maintain h(x) < 0, u > 0 and reduce ‖rdual‖, ‖rcent‖, ‖rpri‖.
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