
Primal-dual interior-point methods part II

Javier Peña (guest lecturer)
Convex Optimization 10-725/36-725



Last time: primal-dual IPM for linear programming

Consider the primal-dual linear programming pair

min cTx
Ax = b
x ≥ 0

max bTy
ATy + s = c
s ≥ 0.

Notation:

• F0 := {(x, y, s) : Ax = b, ATy + s = c, x, s > 0}.
• Given x, s ∈ Rn+, µ(x, s) := xTs

n

• N2(θ) := {(x, y, s) ∈ F0 : ‖XS1− µ(x, s)1‖2 ≤ θµ(x, s)}
Newton step equations:0 AT I

A 0 0
S 0 X

∆x
∆y
∆s

 =

 0
0

τ1−XS1

 .
2



Short-step path following algorithm

Algorithm SPF

1. Let θ, δ ∈ (0, 1) be such that θ2+δ2

23/2(1−θ) ≤
(

1− δ√
n

)
θ.

2. Let (x0, y0, s0) ∈ N2(θ).

3. For k = 0, 1, . . .

I Compute Newton step for

(x, y, s) = (xk, yk, sk), τ =
(

1− δ√
n

)
µ(x, s).

I Set (xk+1, yk+1, sk+1) := (xk, yk, sk) + (∆x,∆y,∆s).

Theorem
The sequence generated by Algorithm SPF satisfies

(xk, yk, sk) ∈ N2(θ) and µ(xk+1, sk+1) =
(

1− δ√
n

)
µ(xk, sk)

3



Infeasible interior-point algorithm

Given (x, y, s), let rb := Ax− b, rc := ATy + s− c.

Assume (x0, y0, s0) with x0, s0 > 0 is given.

N−∞(γ, β) := {(x, y, s) :‖(rb, rc)‖ ≤ [‖(r0b , r0c )‖/µ0]βµ,
x, s > 0, xisi ≥ γµ, i = 1, . . . , n}

for γ ∈ (0, 1), β ≥ 1.

Newton step equations:0 AT I
A 0 0
S 0 X

∆x
∆y
∆s

 = −

 rc
rb

XS1− τ1

 .

4



Algorithm IPF

1. Choose γ ∈ (0, 1), 0 < σmin < σmax < 0.5, and β ≥ 1.

2. Choose (x0, y0, s0) with x0, s0 > 0

3. For k = 0, 1, . . .
I Choose σ ∈ [σmin, σmax]
I Compute Newton step for

(x, y, s) = (xk, yk, sk), τ = σµ(xk, sk)

I Choose αk as the largest α ∈ [0, 1] such that

(xk, yk, sk) + α(∆x,∆y,∆s) ∈ N−∞(γ, β)

µ(xk + α∆x, sk + α∆s) ≤ (1− 0.01α)µ(xk, sk)

I Set (xk+1, yk+1, sk+1) := (xk, yk, sk) + αk(∆x,∆y,∆s)

Theorem
If primal and dual are feasible then the sequence generated by
Algorithm IPF satisfies µk := µ(xk, yk, sk)→ 0 linearly.

5



Outline

Today:

• Recap of semidefinite programming and duality

• The central path

• Primal-dual methods for SDP

• Self-scaled (symmetric) conic programming

• Solvers: SeDuMi, SDPT3

6



Semidefinite program in standard form

Problem of the form

min
X

C •X

subject to A(X) = b

X � 0,

where A : Sn → Rm linear map, b ∈ Rm, C ∈ Sn.

Any semidefinite program can be rewritten in standard form.

Standard assumption: A is surjective.

7



Semidefinite programming duality

The dual of the above problem is

max
y

bTy

subject to A∗(y) � C.

Or equivalently

max
y,S

bTy

subject to A∗(y) + S = C

S � 0.

Throughout the sequel refer to the SDP from the previous slide as
the primal problem and to the above SDP as the dual problem.

8



Semidefinite programming duality

Theorem (Weak duality)

Assume X is primal feasible and y is dual feasible. Then

bTy ≤ C •X.

Theorem (Strong duality)

Assume both primal and dual problems are strictly feasible. Then
their optimal values are the same and they are attained.

9



Strong duality does not always hold

Examples

min 2x12[
0 x12
x12 x22

]
� 0.

min x11[
x11 1
1 x22

]
� 0.

min ax22 0 x12 1− x22
x12 x22 x23

1− x22 x23 x33

 � 0, for a > 0.

10



Optimality conditions

Assume strong duality holds. Then the points X∗ and (y∗, S∗) are
respectively primal and dual optimal solutions if and only if
(X∗, y∗, S∗) solves

A(X) = b

A∗(y) + S = C

XS = 0

X,S � 0.

Interior-point methods: Maintain first two and the fourth
conditions and aim for the third one.

Historical remark
IPM for SDP developed independently by Nesterov & Nemirovski
and Alizadeh in the late 1980s. The topic had a massive burst of
research in the 1990s.

11



Barrier method for primal and dual problems

Pick τ > 0. Approximate the primal SDP with

min
X

C •X − τ log(detX)

subject to A(X) = b

and the dual SDP with

max
y,S

bTy + τ log(detS)

subject to A∗(y) + S = C.

Neat fact:
The above two problems are, modulo a constant, Lagrangian duals
of each other.

12



Primal-dual central path

Assume the primal and dual problems are strictly feasible. The
primal-dual central path is the set

{(X(τ), y(τ), S(τ)) : τ > 0}

where X(τ), and (y(τ), S(τ)) solve the above pair of barrier
problems. Equivalently, (X(τ), y(τ), S(τ)) is the solution to

A(X) = b

A∗(y) + S = C

XS = τI

X, S � 0.

13



Path following interior-point methods

Main idea:
Generate (Xk, yk, Sk) ≈ (x(τk), y(τk), s(τk)) for τk ↓ 0.

Two main issues:

• Measure of proximity to the central path

• Update: Newton-like step

Notation:

F0 := {(X, y, S) : AX = b, A∗y + S = C, X, S � 0}.

14



Local neighborhood of the central path

Given X,S � 0, let

µ(X,S) :=
X • S
n

and

dF (X,S)) := ‖λ(XS)− µ(X,S)1‖2
= ‖X1/2SX1/2 − µ(X,S)I‖F
= ‖S1/2XS1/2 − µ(X,S)I‖F .

Given θ ∈ (0, 1) define the local neighborhood NF (θ) as

NF (θ) := {(X, y, S) ∈ F0 : dF (X,S) ≤ θµ(X,S)}.

15



Newton step

Recall: (X(τ), y(τ), S(τ)) solution toA∗(y) + S − C
A(X)− b
XS

 =

 0
0
τI

 , X, S � 0.

Natural Newton step:0 A∗ I
A 0 0
S 0 X

∆X
∆y
∆S

 =

 0
0

τI −XS

 .
But we run into issues of symmetry...

16



Nesterov-Todd direction
Crux of Newton’s method: Given trial solution x to

G(x) = 0

update to x+ = x+ ∆x by solving

G(x) +G′(x)∆x = 0⇔ G′(x)∆x = −G(x)

We want to linearize
XS − τI = 0.

Primal linearization:

S − τX−1 = 0 τX−1∆XX−1 + ∆S = τX−1 − S.

Dual linearization:

X − τS−1 = 0 ∆X + τS−1∆SS−1 = τS−1 −X.

17



Nesterov-Todd direction

Proper primal-dual linearization: average of previous two

W−1∆XW−1 + ∆S = τX−1 − S

or equivalently

∆X +W∆SW = τS−1 −X

provided
WSW = X.

Achieve the above by taking W as the geometric mean of X,S:

W = S−1/2(S1/2XS1/2)1/2S−1/2

= X1/2(X1/2SX1/2)−1/2X1/2

18



Short-step path following algorithm

Algorithm SPF

1. Let θ, δ ∈ (0, 1) be such that

7(θ2 + δ2)

1− θ
≤
(

1− δ√
n

)
θ,

2
√

2θ

1− θ
≤ 1.

2. Let (X0, y0, S0) ∈ NF (θ).

3. For k = 0, 1, . . .

I Compute Nesterov-Todd direction for

(X, y, S) = (Xk, yk, Sk), τ =

(
1− δ√

n

)
µ(X,S).

I Set (Xk+1, yk+1, Sk+1) := (Xk, yk, Sk) + (∆X,∆y,∆S).

19



Theorem
The sequence generated by Algorithm SPF satisfies

(Xk, yk, Sk) ∈ NF (θ),

and

µ(Xk+1, Sk+1) =

(
1− δ√

n

)
µ(Xk, Sk).

Corollary

In O
(√

n log
(
nµ(X0,S0)

ε

))
the algorithm yields (Xk, yk, Sk) ∈ F0

such that
C •Xk − bTyk ≤ ε.

Have also “long-step”, and “infeasible” algorithms (as in LP).

20



Self-scaled cones

Extend IPM machinery to more general conic programming

min
x

cTx

subject to Ax = b

x ∈ K.

Technical ingredients:

• F : int(K)→ R is logarithmically homogeneous if for all
x ∈ int(K), t > 0

F (tx) = F (x)− ν log t

• A LHB F : int(K)→ R is self-scaled if for all x,w ∈ int(K)

F ′′(w)x ∈ int(K∗) and F ∗(−F (w)x) = F (x)− 2F (w)− ν.

21



Self-scaled cones

A convex cone K ⊆ Rn is self-scaled if there exists a self-scaled
LHB F : int(K)→ R.

Examples

• K = Rn+, F (x) = −
∑n

j=1 log xj .

• K = Sn+, F (X) = − log detX.

• K = Qn, F (x) = − log(x20 − ‖x̄‖2).

Recall Qn :=

{
x =

[
x0
x̄

]
∈ Rn : x0 ≥ ‖x̄‖

}
.

• Any cartesian product of the above.

Self-scaled cones are the same as symmetric cones, a class of
convex cones studied in harmonic analysis.

22



Self-scaled cones

Theorem
Assume K is a self-scaled cone with self-scaled barrier F . Then
K = K∗ and for all x, s ∈ int(K) there exists a unique scaling
point w ∈ int(K) such that

F ′′(w)x = s.

Nice symmetry:

F ′′(w)x = s⇔ F ′′(−F ′(w))s = x.

23



Self-scaled conic programming

Consider

min
x

cTx

subject to Ax = b

x ∈ K,

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn and K is a self-scaled cone.

Dual

max
y,s

bTy

subject to ATy + s = c

s ∈ K.

24



Optimality conditions

Assume strong duality holds. (For instance, both primal and dual
are strictly feasible.)
The points x∗ and (y∗, s∗) are respectively primal and dual optimal
solutions if and only if (x∗, y∗, s∗) solves

Ax = b

ATy + s = c

xTs = 0

x, s ∈ K.

25



Central path

Assume F : int(K)→ R is a self-scaled LHB for K.

Central path
{(x(τ), y(τ), s(τ)) : τ > 0}

where (x(τ), y(τ), s(τ)) solves

Ax = b

ATy + s = c

τF ′(x) + s = 0

x, s ∈ int(K).

26



Nesterov-Todd direction

As before, need to linearize

τF ′(x) + s = 0.

Primal-dual linearization

F ′′(w)∆x+ ∆s = −τF ′(x)− s

where w is the scaling point of x, s.

Nesterov-Todd equations 0 AT I
A 0 0

F ′′(w) 0 I

∆x
∆y
∆s

 = −

ATy + s− c
Ax− b

τF ′(x) + s

 .

27



Local neighborhood of the central path

For x ∈ int(K) let

‖v‖x :=
(
vTF ′′(x)v

)1/2
.

Given x, s ∈ int(K), let

µ(x, s) :=
xTs

ν
.

Given θ ∈ (0, 1) define the local neighborhood N (θ) as

N (θ) := {(x, y, s) ∈ F0 : ‖s+ µ(x, s)F ′(x)‖−F ′(x) ≤ θµ(x, s)}.

Previous IPM machinery extends.

28



Conic programming solvers

When we mix LP/SOCP/SDP it is convenient to convert matrices
into vectors

vec: Rn×n → Rn2
is the mapping

X 7→
[
X11 X12 · · · X1n X21 X22 · · · Xnn

]T
mat: Rn2 → Rn×n is the inverse mapping.

Related mapping svec: Sn → Rn(n+1)/2

X 7→ [X11

√
2X12 · · ·

√
2X1n X22

√
2X23 · · ·

√
2Xn−1,n Xnn]T

Notice: For X,S ∈ Sn

X • S = vec(X)Tvec(S) = svec(X)Tsvec(S).

29



Conic programming solvers

SeDuMi: Developed by late J. Sturm. Freely available from :

http://sedumi.ie.lehigh.edu

Matlab-based, syntax:
> [x,y,info] = sedumi(A,b,c,K) ;

This solves

minx cTx
Ax = b
x ∈ K

maxy,s bTy
ATy + s = c
s ∈ K∗.

Normal termination gives either a primal-dual optimal solution, or
a certificate of infeasibility.

30



In matlab environment A is an m× n matrix, c,x are n-vectors,
and b,y are m-vectors.

K is a structure that describes K:

K.f is the number of free components.

K.l is the number of non-negative components.

K.q lists the dimensions of second-order constraints.

K.s lists the dimensions of SDP constraints.

31



SDPT3: Developed by M. Todd, K. Toh, and R. Tütüncü.

Freely available from

http://www.math.nus.edu.sg/~mattohkc/sdpt3.html

Matlab-based as well. Syntax:

> [obj,X,y,S] = sqlp(blk,A,C,b) ;

blk describes the blocks (LP/SOCP/SDP) in K.

It works with svec instead of vec.

32



References and further reading

• J. Renegar (2001), “A Mathematical View of Interior-Point
Methods.”

• R. Tütüncü, K. Toh, and M. Todd, “Solving
semidefinite-quadratic-linear programs using SDPT3,”
Mathematical Programming 95 (2003), pp. 189–217.

• J. Sturm, “Implementation of Interior Point Methods for
Mixed Semidefinite and Second Order Cone Optimization
Problems,” Optimization Methods and Software 17 (2002),
pp. 1105–1154.

33


