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Last time: primal-dual IPM for linear programming

Consider the primal-dual linear programming pair

min c'z max bTZ/
Ar=b Aly+s=c
x>0 s> 0.
Notation:
.fo::{(l‘,y,8)2A$:b, ATy"i'S:Cv $78>0}‘

ZDTS

e Given z,s € R, p(z,s) := %
° N2(9> = {(a:,y,s) e Fo: ||XS]- - :u(st)l”Q < 9:“(1‘78)}

Newton step equations:

0 AT 17 [Azx 0
A 0 O0f [Ay| = 0
S 0 X| |As 71— XS1



Short-step path following algorithm

Algorithm SPF
1. Let 0,5 € (0,1) be such that -2t < (1 - i) 6.

23/2(1-0) —
2. Let (29,99, 5%) € No(0).
3. Fork=0,1,...

» Compute Newton step for
(5177:[/78) = (‘T’.kvyka Sk)v T = (]- - %) :u’(xvs)

> Set (zFt1 yktl k1) = (2F y* %) + (Az, Ay, As).

Theorem
The sequence generated by Algorithm SPF satisfies

(2%, y¥, sF) € N3(0) and p(xF+1 k1) = (1 _ %) p(z*, 5%



Infeasible interior-point algorithm

Given (z,v,5), let 1, := Az — b,r. := ATy + 5 — .
Assume (20,9, s%) with 2%, s > 0 is given.

Neoo(: B) = {(@,y, 8) :ll(ros o)l < (5, 7)1 /1) B,

x,s > 0,28 > yu,i=1,...,n}
fory€(0,1), B> 1.
Newton step equations:
0 AT 17 [Az Te
A 0 0Of |Ay| =- T

S 0 X| |As XS1-71



Algorithm IPF

1. Choose v € (0,1), 0 < Omin < Omax < 0.5, and 8 > 1.
2. Choose (29,70, 5%) with 2°,5% > 0
3. For k=0,1,...

» Choose 0 € [0min; Tmax]
» Compute Newton step for

(z,y,8) = (", y",s"), 7= opu(a", s")
» Choose «ay as the largest o € [0,1] such that
(z®,y*, s%) + a(Az, Ay, As) € N_oo (7, B)
w(z® 4+ aAz, s* + alAs) < (1 —0.01a)u(zy, si)

» Set (zFt1 yktl k1) = (2F y* %) + ap(Ax, Ay, As)

Theorem
If primal and dual are feasible then the sequence generated by
Algorithm IPF satisfies puy, := pu(z*, y*, s*) — 0 linearly.



Outline

Today:
e Recap of semidefinite programming and duality

The central path

Primal-dual methods for SDP

Self-scaled (symmetric) conic programming
Solvers: SeDuMi, SDPT3



Semidefinite program in standard form

Problem of the form
min CeX
X
subject to  A(X) =10
X =0,

where A : S™ — R™ linear map, b € R™,C € S".
Any semidefinite program can be rewritten in standard form.

Standard assumption: A is surjective.



Semidefinite programming duality

The dual of the above problem is

max by
Y

subject to  A*(y) < C.

Or equivalently

bT

s Y

subject to  A*(y)+S=C
S = 0.

Throughout the sequel refer to the SDP from the previous slide as
the primal problem and to the above SDP as the dual problem.



Semidefinite programming duality

Theorem (Weak duality)
Assume X is primal feasible and y is dual feasible. Then

by <CeX.

Theorem (Strong duality)

Assume both primal and dual problems are strictly feasible. Then
their optimal values are the same and they are attained.
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Optimality conditions

Assume strong duality holds. Then the points X* and (y*, S*) are
respectively primal and dual optimal solutions if and only if
(X*,y*, 8*) solves

A(X) = b

A (y)+S=C
XS5=0
X, 8 = 0.

Interior-point methods: Maintain first two and the fourth
conditions and aim for the third one.

Historical remark

IPM for SDP developed independently by Nesterov & Nemirovski
and Alizadeh in the late 1980s. The topic had a massive burst of
research in the 1990s.
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Barrier method for primal and dual problems

Pick 7 > 0. Approximate the primal SDP with

H}}H C e X — 7log(det X)

subject to  A(X) =10
and the dual SDP with
max bTy + 7log(det S)

Y,S
subject to  A*(y)+ S5 =C.

Neat fact:
The above two problems are, modulo a constant, Lagrangian duals
of each other.
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Primal-dual central path

Assume the primal and dual problems are strictly feasible. The
primal-dual central path is the set

{(X(7),y(7),5(7)) : 7 > 0}

where X (7), and (y(7),S(7)) solve the above pair of barrier
problems. Equivalently, (X (7),y(7),S(7)) is the solution to

AX)=b
A*(y)+S=C
XS =1l

X, 5~0.
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Path following interior-point methods

Main idea:
Generate (X, y*, S%) =~ (z(7%),y(7%), s(%)) for 7% | 0.

Two main issues:

e Measure of proximity to the central path
e Update: Newton-like step

Notation:

FO= {(X.5,8): AX =b, Ay +5=C, X, 5~ 0}.
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Local neighborhood of the central path

Given X, 5 = 0, let

and

dp(X,8)) == [AXS) = p(X, 9)1]2
= || X' 28X — (X, )T |k
= ||S"2X 812 — (X, )| -

Given 6 € (0,1) define the local neighborhood Nr(6) as

Np(9) = {(X,y,5) € F*: dp(X,S) < u(X, S)}.
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Newton step

Recall: (X(7),y(1),S(7)) solution to

A*(y) +S-C 0
AX) -0 =101, X,5>0.
XS 71
Natural Newton step:
0 A" I| |AX 0
A 0 0 Ay | = 0
S 0 X| |[AS Tl — XS

But we run into issues of symmetry...
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Nesterov-Todd direction

Crux of Newton's method: Given trial solution x to
G(x)=0
update to T = 2 + Az by solving
G(z) + G (2)Az =0 & G'(z)Ax = —G(x)

We want to linearize
XS —-7I=0.

Primal linearization:
S—1X =0~ 71X AXX P+ AS=7X"1-5.
Dual linearization:

X—-785"1'=0~~AX +7571ASS 1 =751 — X,



Nesterov-Todd direction
Proper primal-dual linearization: average of previous two
WHAXW P+ AS=7X"1-8
or equivalently
AX + WASW =781 - X

provided
WSW = X.

Achieve the above by taking W as the geometric mean of X, S:

W = 5—1/2(51/2){51/2)1/25—1/2
:Xl/Q(Xl/QSXl/Z)—l/ZXl/Q
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Short-step path following algorithm

Algorithm SPF
1. Let 8,9 € (0,1) be such that

2. Let (X099 8% € N (0).
3. For k=0,1,...

» Compute Nesterov-Todd direction for
(X,5,8) = (X*,5%,55), 7= (1- -2 ) u(x, )
b ) ) b ) \/ﬁ b *

> Set (XFH1 yk+1l Ghtl) .= (XF 4k S*) + (AX, Ay, AS).
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Theorem
The sequence generated by Algorithm SPF satisfies

(X%, 4%, S*) € Np(6),

and 5
M(Xk+1,Sk+1) — (1 o \/ﬁ) H(Xk,Sk)

Corollary
In O (\/ﬁlog (M)) the algorithm yields (X*,y* S¥) ¢ FO0
such that

CoXk—bTyk <e.

Have also “long-step”, and “infeasible” algorithms (as in LP).
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Self-scaled cones
Extend IPM machinery to more general conic programming
min 'z
T
subject to Az =10
z e K.

Technical ingredients:

e F:int(K) — R is logarithmically homogeneous if for all
zxeint(K), t>0

F(tx) = F(z) —vlogt
e ALHB F:int(K) — R is self-scaled if for all z,w € int(K)

F"(w)z € int(K*) and F*(—F(w)z) = F(z) — 2F(w) — v.
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Self-scaled cones

A convex cone K C R” is self-scaled if there exists a self-scaled
LHB F :int(K) — R.

Examples
o K =R}, F(z) =37 logz;.
e K =871, F(X)= —logdet X.

o K =Qp, F(z) = —log(z§ — [|7|]%).
Recall Q,, = {$ = [”ﬂ ER™: 3y > yxu}.

e Any cartesian product of the above.

Self-scaled cones are the same as symmetric cones, a class of
convex cones studied in harmonic analysis.
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Self-scaled cones

Theorem

Assume K is a self-scaled cone with self-scaled barrier F'. Then
K = K* and for all x,s € int(K) there exists a unique scaling
point w € int(K) such that

F'(w)z = s.

Nice symmetry:

F'(w)r =s & F"(—F'(w))s = x.
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Self-scaled conic programming

Consider

min '

xT

subject to Az =10
r €K,

where A € R™*" b e R™,c e R" and K is a self-scaled cone.
Dual

max by

y?s

subject to ATy +s=c
s € K.
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Optimality conditions

Assume strong duality holds. (For instance, both primal and dual
are strictly feasible.)

The points z* and (y*, s*) are respectively primal and dual optimal
solutions if and only if (z*, y*, s*) solves

Axr =b
Aly+s=c
zTs =0
x,s € K.
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Central path

Assume F':int(K) — R is a self-scaled LHB for K.

Central path
{(z(7),y(7),s(r)) : 7 > 0}

where (z(7),y(7), s(7)) solves

Az =b

Aly+s=c

TF' () +s=0
x,s € int(K).
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Nesterov-Todd direction

As before, need to linearize
7F'(z) +s=0.
Primal-dual linearization
F'"(w)Az + As = —7F'(z) — s
where w is the scaling point of z, s.

Nesterov-Todd equations

0 AT I [Az ATy +s—c
A 0 0] [Ay| =-— Az —b
F'(w) 0 If |As TF'(z)+ s
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Local neighborhood of the central path

For z € int(K) let

o]z := (UTF//(SC)U) 1/2.

Given x, s € int(K), let

iz, s)

Given 6 € (0,1) define the local neighborhood N (6) as
N () = {(,5,8) € P |15 + (e 8) F'(@)| oy < Oula )}

Previous IPM machinery extends.
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Conic programming solvers

When we mix LP/SOCP/SDP it is convenient to convert matrices
into vectors

vec: R 5 R" s the mapping
-
X [Xn X2 0 Xin Xo1 Xoo o+ X

mat: R™ — R"*" is the inverse mapping.

Related mapping svec: S" — Rn(n+1)/2

X (X1 V2Xia - V2X1, Xoo V2Xo3 -0 V2X,_1, Xon)'
Notice: For X, S € S™

X o5 = vec(X) vec(S) = svec(X) svec(S).
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Conic programming solvers

SeDuMi: Developed by late J. Sturm. Freely available from :
http://sedumi.ie.lehigh.edu

Matlab-based, syntax:
> [x,y,info] = sedumi(A,b,c,K) ;

This solves
min, c'x maxy g by
Ax =10 ATy+s=c
re K s e K*.

Normal termination gives either a primal-dual optimal solution, or
a certificate of infeasibility.
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In matlab environment A is an m X n matrix, c,x are n-vectors,
and b,y are m-vectors.

K is a structure that describes K:

K.f is the number of free components.

K.l is the number of non-negative components.

K.q lists the dimensions of second-order constraints.

K.s lists the dimensions of SDP constraints.
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SDPT3: Developed by M. Todd, K. Toh, and R. Titinci.

Freely available from
http://www.math.nus.edu.sg/ mattohkc/sdpt3.html

Matlab-based as well. Syntax:
> [obj,X,y,S] = sqlp(blk,A,C,b) ;
blk describes the blocks (LP/SOCP/SDP) in K.

It works with svec instead of vec.
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