
Case Study: Generalized Lasso Problems

Ryan Tibshirani
Convex Optimization 10-725/36-725

1

Last time: review of optimization toolbox

So far we’ve learned about:

• First-order methods

• Newton/quasi-Newton methods

• Interior point methods

These comprise a good part of the core tools in optimization, and
are a big focus in this field

(Still, there’s a lot more out there. Before the course is over we’ll
cover dual methods and ADMM, coordinate descent, proximal and
projected Newton ...)

Given the number of available tools, it may seem overwhelming to
choose a method in practice. A fair question: how to know what
to use when?

2

It’s not possible to give a complete answer to this question. But
the big algorithms table from last time gave guidelines. It covered:

• Assumptions on criterion function

• Assumptions on constraint functions/set

• Ease of implementation (how to choose parameters?)

• Cost of each iteration

• Number of iterations needed

Other important aspects, that it didn’t consider: parallelization,
data storage issues, statistical interplay

Here, as any example, we walk through some of the high-level
reasoning for related but distinct generalized lasso problem cases

3

Generalized lasso problems

Consider the problem

min
β

f(β) + λ‖Dβ‖1

where f : Rn → R is a smooth, convex function and D ∈ Rm×n is
a penalty matrix. This is called a generalized lasso problem

The usual lasso, D = I, encodes sparsity in solution β̂, while the
generalized lasso encodes sparsity in

Dβ̂ =

 D1β̂
...

Dmβ̂


where D1, . . . Dm are the rows of D. This can result in interesting
structure in β̂, depending on choice of D

4

Outline

Today:

• Notable examples

• Algorithmic considerations

• Back to examples

• Implementation tips

5

Fused lasso or total variation denoising, 1d

Special case: fused lasso or total variation denoising in 1d, where

D =


−1 1 0 . . . 0 0
0 −1 1 . . . 0 0
...
0 0 0 . . . −1 1

 , so ‖Dβ‖1 =
n−1∑
i=1

|βi − βi+1|

Now we obtain sparsity in adjacent differences β̂i − β̂i+1, i.e., we
obtain β̂i = β̂i+1 at many locations i

Hence, plotted in order of the locations i = 1, . . . n, the solution β̂
appears piecewise constant

6

Examples:

Gaussian loss Logistic loss
f(β) = 1

2

∑n
i=1(yi − βi)2 f(β) =

∑n
i=1(−yiβi + log(1 + eβi))

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●
●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

0 20 40 60 80 100

−
2

−
1

0
1

2

●

●●●

●

●

●●

●●●●●●●●●●

●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●●●●

●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●

●●●●●●●

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

7

Higher order polynomials fits are possible too. These are called
trend filtering methods in 1d, i.e.,

D =


1 −2 1 . . . 0
0 1 −2 . . . 0
...
0 0 0 . . . 1

 or D =


−1 3 −3 1 . . . 0
0 1 −3 3 . . . 0
...
0 0 0 0 . . . 1



so ‖Dβ‖1 =
n−2∑
i=1

|βi − 2βi+1 + βi+2|

or ‖Dβ‖1 =
n−3∑
i=1

|βi − 3βi+1 + 3βi+2 − βi+3|

The first penalty gives piecewise linear solution β̂, and the second
gives a piecewise quadratic

8

Examples:

Gaussian loss, linear trend Poisson loss, quadratic trend
f(β) = 1

2

∑n
i=1(yi − βi)2 f(β) =

∑n
i=1(−yiβi + eβi)

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 20 40 60 80 100

2
4

6
8

10
12

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●●

●

●●●●●●●●●●

●

●●

●

●●

●

●●

●

●

●

●●

●

●

●●

●●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●●

●

●●●●●●●●

●

●

●

●●

●

0 20 40 60 80 100

0
2

4
6

8
10

12

9

Fused lasso or total variation denoising, graphs

Special case: fused lasso or total variation denoising over a graph,
G = ({1, . . . n}, E). Here D is |E| × n, and if e` = (i, j), then D
has `th row

D` = (0, . . .−1
↑
i

, . . . 1
↑
j

, . . . 0)

so
‖Dβ‖1 =

∑
(i,j)∈E

|βi − βj |

Now at the solution, we get β̂i = β̂j
across many edges (i, j) ∈ E, so β̂ is
piecewise constant over the graph G

10

Example: Gaussian loss, f(β) = 1
2

∑n
i=1(yi − βi)2, 2d grid graph

3
4

5
6

7

Data (noisy image) Solution (denoised image)

11

Example: Gaussian loss, f(β) = 1
2

∑n
i=1(yi − βi)2, Chicago graph

Data (observed crime rates) Solution (estimated crime rates)

12

Problems with a big dense D

Special case: in some problems we encounter a big dense operator
D, whose structure might as well be considered arbitrary

E.g., we might have collected measurements that we know should
lie mostly orthogonal to the desired estimate β̂, and we stack these
along the rows of D, known as analyzing operator in this setup

E.g., equality-constrained lasso problems also fit into this case, as

min
β

f(β) + λ‖β‖1 subject to Aβ = 0

can be reparametrized by letting D ∈ Rn×r have columns to span
null(A). Then Aβ = 0 ⇐⇒ β = Dθ for some θ ∈ Rr, and the
above is equivalent to

min
θ

f(Dθ) + λ‖Dθ‖1

13

Generalized lasso algorithms

Let’s go through our toolset, to figure out how to solve

min
β

f(β) + λ‖Dβ‖1

Subgradient method: subgradient of criterion is

g = ∇f(β) + λDTγ

where γ ∈ ∂‖x‖1 evaluated at x = Dβ, i.e.,

γi ∈

{
{sign

(
(Dβ)i

)
} if (Dβ)i 6= 0

[−1, 1] if (Dβ)i = 0
, i = 1, . . .m

Downside (as usual) is that convergence is slow. Upside is that g is
easy to compute (provided ∇f is): if S = supp(Dβ), then we let

g = ∇f(β) + λ
∑
i∈S

sign
(
(Dβ)i

)
·Di

14

Proximal gradient descent: prox operator is

proxt(β) = argmin
z

1

2t
‖β − z‖22 + λ‖Dz‖1

This is not easy for a generic D (compare soft-thresholding, when
D = I). Actually, this is a highly nontrivial optimization problem,
even when D is structured (e.g., Gaussian trend filtering)

Could try reparametrizing the term ‖Dβ‖1 to make it linear, while
introducing inequality constraints. We could then apply an interior
point method

But we will have better luck going to the dual problem. (In fact, it
is never a bad idea to look at the dual problem, even if you have a
good approach for the primal problem!)

15

Generalized lasso dual
Our problems are

Primal : min
β

f(β) + λ‖Dβ‖1

Dual : min
u

f∗(−DTu) subject to ‖u‖∞ ≤ λ

Here f∗ is the conjugate of f . Note that u ∈ Rm (where m is the
number of rows of D) while β ∈ Rn

The primal and dual solutions β̂, û are linked by KKT conditions:

∇f(β̂) +DT û = 0, and

ûi ∈


{λ} if (Dβ̂)i > 0

{−λ} if (Dβ̂)i < 0

[−λ, λ] if (Dβ̂)i = 0

, i = 1, . . .m

Second property implies that: ûi ∈ (−λ, λ) =⇒ (Dβ̂)i = 0

16

Let’s go through our toolset, to think about solving dual problem

min
u

f∗(−DTu) subject to ‖u‖∞ ≤ λ

Note the eventually we’ll need to solve ∇f(β̂) = −DT û for primal
solution, and tractability of this depends on f

Proximal gradient descent: looks much better now, because prox is

proxt(u) = argmin
z

1

2t
‖u− z‖22 subject to ‖z‖∞ ≤ λ

is easy. This is projection onto a box [−λ, λ]m, i.e., prox returns ẑ
with

ẑi =


λ if ui > λ

−λ if ui < −λ
ui if ui ∈ [−λ, λ]

, i = 1, . . .m

17

Interior point method: rewrite dual problem as

min
u

f∗(−DTu) subject to −λ ≤ ui ≤ λ, i = 1, . . .m

These are just linear constraints, so we can easily form log barrier1

as in
min
u

t · f∗(−DTu) + φ(u)

where

φ(u) = −
m∑
i=1

(
log(λ− ui) + log(ui + λ)

)
We either solve above problem with Newton’s method, or take one
Newton step, and then increase t

How efficient are Newton updates?

1There could be extra constraints from the domain of f∗, e.g., this happens
when f is the logistic loss, so these add extra log barrier terms

18

Define the barrier-smoothed dual criterion function

F (u) = tf∗(−DTu) + φ(u)

Newton updates follow direction H−1g, where

g = ∇F (u) = −t ·D
(
∇f∗(−DTu)

)
+∇φ(u)

H = ∇2F (u) = t ·D
(
∇2f∗(−DTu)

)
DT +∇2φ(u)

How difficult is it to solve a linear system in H?

• First term: if Hessian off the loss term ∇2f∗(v) is structured,
and D is structured, then often D∇2f∗(v)DT is structured

• Second term: Hessian of log barrier term ∇2φ(u) is diagonal

So it really depends critically on first term, i.e., on conjugate loss
f∗ and penalty matrix D

19

Putting it all together:

• Primal subgradient method: iterations are cheap (we sum up
rows of D over active set S), but convergence is slow

• Primal proximal gradient: iterations involve evaluating

proxt(β) = argmin
z

1

2t
‖β − z‖22 + λ‖Dz‖1

which can be very expensive, convergence is medium

• Dual proximal gradient: iterations involve projecting onto a
box, so very cheap, convergence is medium

• Dual interior point method: iterations involve a solving linear
Hx = g system in

H = t ·D
(
∇2f∗(−DTu)

)
DT +∇2φ(u)

which may or may not be expensive, convergence is rapid

20

Back to examples: linear trend filtering

Suppose that we are studying the linear trend filtering problem, so

D =


1 −2 1 . . . 0 0
0 1 −2 . . . 0 0
...
0 0 0 . . . −2 1

 ,
and the loss is either Gaussian f(β) = 1

2

∑n
i=1(yi − βi)2, or logistic

f(β) =
∑n

i=1(−yiβi + log(1 + eβi))

Suppose further that we desire solution at a high level of accuracy,
otherwise, we notice “wiggles” when plotting β̂

What algorithm should we use?

21

Primal subgradient and primal proximal gradient are out (slow and
intractable, respectively)

As for dual algorithms, one can check that the conjugate f∗ has a
closed-form for both the Gaussian and logistic cases:

f∗(v) =
1

2

n∑
i=1

y2i −
1

2

n∑
i=1

(yi + vi)
2 and

f∗(v) =

n∑
i=1

(
(vi + yi) log(vi + yi) + (1− vi − yi) log(1− vi − yi)

)
respectively. We also the have expressions for primal solutions

β̂ = y −DT û and

β̂i = −yi log
(
yi(D

T û)i
)
+ yi log

(
1− yi(DT û)i

)
, i = 1, . . . n

respectively

22

Dual proximal gradient descent admits very efficient iterations, as
it just projects u+ tD∇f∗(−DTu) onto a box, repeatedly. But it
takes far too long to converge to high accuracy: even more so than
usual, because it suffers from poor conditioning of D

●

●

●

●

●

100 200 500 1000 2000 5000

1e
+

03
1e

+
05

1e
+

07
1e

+
09

1e
+

11

n

C
on

di
tio

n
nu

m
be

r
of

 (
k+

1)
st

 o
pe

ra
to

r

●

●

●

●

●

●

●

●

●

●

k=0
k=1
k=2

(Here k = 0: operator for fused lasso, k = 1: linear trend filtering,
k = 2: quadratic trend filtering)

23

Importantly, ∇2f∗(v) is a diagonal matrix in both the Gaussian
and logistic cases:

∇2f∗(v) = I and

∇2f∗(v) = diag

(
1

vi + yi
+

1

1− vi − yi
, i = 1, . . .m

)
respectively. Therefore the Newton steps in a dual interior point
method involve solving a linear system Hx = g in

H = DA(u)DT +B(u)

where A(u), B(u) are both diagonal. This is a banded matrix, and
so these systems can be solved very efficiently, in O(n) flops

Hence, an interior point method on the dual problem is the way to
go: cheap iterations, and convergence to high accuracy is very fast

24

Recall example from our first lecture:

●

●

●●

●

●

●

●
●

●

●

●
●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●●

●

●●

●

●

●

●

●

●
●
●●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●●●●
●

●

●

●

●

●
●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●
●
●

●
●
●

●●

●

●

●

●

●

●

●

●

●
●
●●●

●

●
●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●
●●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●
●

●

●●

●●

●

●

●

●

●

●

●
●
●

●

●
●

●●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●
●

●●

●

●
●●
●

●

●

●

●●
●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●●●

●●
●

●

●

●

●

●

●

●
●

●●

●

●
●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●●

●

●

●

●
●
●

●

●

●●

●●●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●●
●
●
●

●
●

●

●

●

●

●
●
●

●

●

●●

●

●●

●
●
●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●●●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●
●
●
●

●

●

●
●

●

●●

●

●●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●
●

●
●●

●

●●●

●

●

●●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●●
●

●●

●●
●

●
●

●

●●
●

●
●
●

●●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●
●

●

●

●
●

●

0 200 400 600 800 1000

0
5

10

Timepoint

A
ct

iv
at

io
n

le
ve

l

●

●

●●

●

●

●

●
●

●

●

●
●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●●

●

●●

●

●

●

●

●

●
●
●●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●●●●
●

●

●

●

●

●
●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●
●
●

●
●
●

●●

●

●

●

●

●

●

●

●

●
●
●●●

●

●
●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●
●●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●
●

●

●●

●●

●

●

●

●

●

●

●
●
●

●

●
●

●●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●
●

●●

●

●
●●
●

●

●

●

●●
●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●●●

●●
●

●

●

●

●

●

●

●
●

●●

●

●
●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●●

●

●

●

●
●
●

●

●

●●

●●●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●●
●
●
●

●
●

●

●

●

●

●
●
●

●

●

●●

●

●●

●
●
●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●●●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●
●
●
●

●

●

●
●

●

●●

●

●●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●
●

●
●●

●

●●●

●

●

●●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●●
●

●●

●●
●

●
●

●

●●
●

●
●
●

●●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●
●

●

●

●
●

●

0 200 400 600 800 1000

0
5

10
Timepoint

A
ct

iv
at

io
n

le
ve

l

Dual interior point method
20 iterations

Dual proximal gradient
10,000 iterations

25

Back to examples: graph fused lasso

Essentially the same story holds when D is the fused lasso operator
on an arbitrary graph:

• Primal subgradient is slow, primal prox is intractable

• Dual prox is cheap to iterate, but slow to converge

• Dual interior point method solves structured linear systems, so
its iterations are efficient, and is preferred

Dual interior point method repeatedly solves Hx = g, where

H = DA(u)DT +B(u)

and A(u), B(u) are both diagonal. This no longer banded, but it is
highly structured: D is the edge incidence matrix of the graph, and
L = DTD the graph Laplacian

But the story can suddenly change, with a tweak to the problem!

26

Back to examples: regression problems

Consider the same D, and the same Gaussian and logistic losses,
but with regressors or predictors xi ∈ Rp, i = 1, . . . n,

f(β) =
1

2

n∑
i=1

(yi − xTi β)2 and

f(β) =

n∑
i=1

(
− yixTi β + log(1 + exp(xTi β)

)
respectively. E.g., if the predictors are connected over a graph, and
D is the graph fused lasso matrix, then the estimated coefficients
will be constant over regions of the graph

Assume that the predictors values are arbitrary. Everything in the
dual is more complicated now

27

Denote X ∈ Rn×p as the predictor matrix (rows xi, i = 1, . . . n),
and f(β) = h(Xβ) as the loss. Our problems are

Primal : min
β

h(Xβ) + λ‖Dβ‖1

Dual : min
u,v

h∗(v)

subject to XT v +DTu = 0, ‖u‖∞ ≤ λ

Here h∗ is the conjugate of h. Note that we have u ∈ Rm, v ∈ Rp.
Furthermore, the primal and dual solutions β̂ and û, v̂ satisfy

∇h(Xβ̂)− v̂ = 0 or equivalently

XT∇h(Xβ̂) +DT û = 0

Computing β̂ from the dual requires solving a linear system in X,
very expensive for generic X

28

Dual proximal gradient descent has become intractable, because
the prox operator is

proxt(u, v) = argmin
XTw+DT z=0

1

2t
‖u− z‖22 +

1

2t
‖v − w‖22 + ‖u‖∞

This is finding the projection of (u, v) onto the intersection of a
plane and a (lower-dimensional) box

Dual interior point methods also don’t look nearly as favorable as
before, because the equality constraint

XT v +DTu = 0

must be maintained, so we augment the inner linear systems, and
this ruins their structure, since X is assumed to be dense

Primal subgradient method is still very slow. Must we use it?

29

In fact, for large and dense X, our best option is probably to use
primal proximal gradient descent. The gradient

∇f(β) = XT∇h(Xβ)

is easily computed via the chain rule, and the prox operator

proxt(β) = argmin
z

1

2t
‖β − z‖22 + λ‖Dz‖1

is not evaluable in closed-form, but it is precisely the same problem
we considered solving before: graph fused lasso with Gaussian loss,
and without regressors

Hence to (approximately) evaluate the prox, we run a dual interior
point method until convergence. We have freed ourselves entirely
from solving linear systems in X

30

(a) fold 1 (b) fold 3 (c) fold 5 (d) fold 7 (e) fold 9 (f) overlap

Figure 4: Consistency of selected voxels in different trials of cross-validations. The results of 5 different folds of cross-validations are shown
in (a)-(e) and the overlapping voxels in all 10 folds are shown in (f). The top row shows the results for GFL and the bottom row shows the
results for L1. The percentages of the overlapping voxels were: GFL(66%) vs. L1(22%).

Table 1: Comparison of the accuracy of AD classification.

Task LR SVM LR+L1 LR+GFL
AD/NC 80.45% 82.71% 81.20% 84.21%

MCI 63.83% 67.38% 68.79% 70.92%

We compared GFL to logistic regression (LR), support
vector machine (SVM), and logistic regression with an
L1 regularizer. The classification accuracies obtained based
on a 10-fold cross validation (CV) are shown in Table 1,
which shows that GFL yields the highest accuracy in both
tasks. Furthermore, compared with other reported results,
our performance are comparable with the state-of-the-art.
In (Cheng, Zhang, and Shen 2012), the best performance
with MCI tasks is 69.4% but our method reached 70.92%.
In (Chu et al. 2012), a similar sample size is used as in our
experiments, the performance of our method with ADNC
tasks is comparable to or better than their reported results
(84.21% vs. 81-84%) whereas our performance with MCI
tasks is much better (70.92% vs. 65%).

We applied GFL to all the samples where the optimal pa-
rameter settings were determined by cross-validation. Figure
5 compares the selected voxels with non-structured sparsity
(i.e. L1), which shows that the voxels selected by GFL clus-
tered into several spatially connected regions, whereas the
voxels selected by L1 were more scattered. We considered
the voxels that corresponded to the top 50 negative �i’s as
the most atrophied voxels and projected them onto a slice.
The results show that the voxels selected by GFL were con-
centrated in hippocampus, parahippocampal gyrus, which
are believed to be the regions with early damage that are
associated with AD. By contrast, L1 selected either less crit-
ical voxels or noisy voxels, which were not in the regions
with early damage (see Figure 5(b) and 5(c) for details).
The voxels selected by GFL were also much more consistent
than those selected by L1, where the percentages of overlap-
ping voxels according to the 10-fold cross-validation were:

(a) (b) (c)

Figure 5: Comparison of GFL and L1. The top row shows the
selected voxels in a 3D brain model, the middle row shows the
top 50 atrophied voxels, and the bottom row shows the projec-
tion onto a brain slice. (a) GFL (accuracy=84.21%); (b) L1 (ac-
curacy=81.20%); (c) L1 (similar number of voxels as in GFL).

GFL=66% vs. L1=22%, as shown in Figure 4.

Conclusions
In this study, we proposed an efficient and scalable algo-
rithm for GFL. We demonstrated that the proposed algo-
rithm performs significantly better than existing algorithms.
By exploiting the efficiency and scalability of the proposed
algorithm, we formulated the diagnosis of AD as GFL. Our
evaluations showed that GFL delivered state-of-the-art clas-
sification accuracy and the selected critical voxels were well
structured.

2168

(From Xin et al. (2014), “Efficient generalized fused lasso and its
application to the diagnosis of Alzheimer’s disease”)

31

Relative importance: dementia vs normal

0 20 40 60 80 100

trust03.3

digcor

sick03.2

grpsym09.1

pulse21

orthos27

race01.1

hctz06

gend01

early39

fear05.1

estrop39

newthg68.1

cdays59

race01.2

β̂..1: dementia vs normal

65 70 75 80 85 90 95 100

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

fear05.1
sick03.2
newthg68.1
early39
hctz06
grpsym09.1
orthos27
race01.1
gend01
trust03.3
pulse21
digcor
cdays59
estrop39
race01.2

C
oe

ffi
ci

en
ts

Age

Relative importance: death vs normal

0 20 40 60 80 100

whmile09.2

ltaai

anyone

diabada.3

nomeds06

exer59

hlth159.1

smoke.3

dig06

numcig59

hurry59.2

cis42

gend01

ctime27

digcor

β̂..2: death vs normal

65 70 75 80 85 90 95 100

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

ctime27
numcig59
cis42
diabada.3
hlth159.1
dig06
whmile09.2
nomeds06
anyone
exer59
ltaai
hurry59.2
smoke.3
gend01
digcor

C
oe

ffi
ci

en
ts

Age

(From Adhikari et al. (2015), “High-dimensional longitudinal
classification with the multinomial fused lasso”)

32

Back to examples: 1d fused lasso

Let’s turn to the special case of the fused lasso in 1d, recall

D =


−1 1 0 . . . 0 0
0 −1 1 . . . 0 0
...
0 0 0 . . . −1 1


The prox function in the primal is

proxt(β) = argmin
z

1

2t
‖β − z‖22 + λ

n∑
i=1

|zi − zi+1|

This can be directly computed using specialized approaches such as
dynamic programming2 or taut-string methods3 in O(n) operations

2Johnson (2013), “A dynamic programming algorithm for the fused lasso
and L0-segmentation”

3Davies and Kovac (2001), “Local extremes, runs, strings, multiresolution”
33

How fast is this prox operation, say with dynamic programming?

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●●●●●●●●●●●●●●●●

0e+00 2e+06 4e+06 6e+06 8e+06 1e+07

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Problem size n

T
im

e
(s

ec
on

ds
)

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●
●●●●●●●●●●●●●●●●●●

●

●

DP prox
BD solve

Dynamic programming
versus

Banded matrix solve

In short, really fast! Hence, primal proximal gradient descent looks
very appealing, because the primal prox is so efficient. Note this is
true for any loss function f

34

When f is the Gaussian or logistic losses, without predictors, both
primal proximal gradient and dual interior point method are strong
choices. How do they compare? Logistic loss example, n = 2000:

●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●●

1e−03 1e−01 1e+01

0
20

0
40

0
60

0
80

0
10

00

lambda

pr
ox

 c
ou

nt

●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●

●

●

cold
warm

●●
●

●●

●

●

●

●

●●

●

●●
●

●●

●

●●
●●●

●

●●
●
●

●

●

●●

●●

●

●●

●●●

●

●
●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●
●
●

●●

●

●

●
●

●●●

●●

●

●

●●

●
●

1e−03 1e−01 1e+01
40

60
80

10
0

lambda

N
ew

to
n

co
un

t

●

●
●

●●
●
●

●

●

●●

●

●●
●

●●

●

●●●●●

●

●●
●
●

●

●●

●●●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●●

●●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●●●

●●

●
●

●●

●
●

●

●

cold
warm

Primal prox gradient is better for large λ, dual interior point better
for small λ. Why this direction?

35

Primal : min
β

f(β) + λ‖Dβ‖1

Dual : min
u

f∗(−DTu) subject to ‖u‖∞ ≤ λ

Observe:

• Large λ: many components (Dβ̂)i = 0 in primal, and many
components ûi ∈ (−λ, λ) in dual

• Small λ: many components (Dβ̂)i 6= 0 in primal, and many
components |ûi| = λ in dual

When many (Dβ̂)i = 0, there are fewer “effective parameters” in
the primal optimization; when many |ûi| = λ, the same is true in
the dual

Hence, generally:

• Large λ: easier for primal algorithms

• Small λ: easier for dual algorithms

36

In the previous example, dual interior point method starts winning
at about λ = 0.1, but statistically speaking, this is already crazily
under-regularized

●●●●●●●●●●

●

●

●

●●●●●●●●●●●

●

●●

●

●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●

●●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●●●●●●●●●●●●●●

●

●●●●●●●

●●

●

●

●●●●●

●

●●●●●●●

●●

●●●●●●●●●●●●●

●

●

●

●●●●●●

●

●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●

●

●●

●

●●●

●

●●●●●●●●●

●

●●●●●

●

●●●

●

●●●●●●●●●●●

●

●●●

●

●●●●●●●

●

●●●●●●●●●

●●

●●

●●●

●

●

●●●

●

●●

●

●●●

●●

●

●●

●●

●

●●●●

●●●

●●

●

●●●●

●

●

●

●

●

●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●

●

●●●

●

●●●●●

●

●●●

●

●●●●●

●

●●

●

●●●●●

●

●●●●●●●●●●●

●

●●●●●●●●●

●

●

●●

●●

●

●●●●

●●●

●

●

●

●●●●

●●

●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●

●

●●●●●●●

●

●●●●●

●

●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●

●●

●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●●●●●●

●

●●

●●

●●

●

●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●

●

●●

●

●

●

●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●

●

●

●●

●●●

●

●●●●●

●

●●

●●

●

●

●●

●●●

●●●●

●●●●●

●●●

●●

●

●

●●●●●●●

●

●

●●

●

●

●●●

●

●●●●

●

●●●●●

●

●●

●●

●●●●●

●●

●

●●●

●

●●

●●●●●●●●●●●●●

●●

●●●●●●●●●

●●

●●●●

●●●

●

●●

●

●●●

●●●●

●

●●

●●●

●

●

●●

●

●●●●●

●●●

●●●

●

●●

●

●●●●●●●●●●

●●●●

●●

●

●●●●

●●

●●

●

●●●●●

●

●●●●●●

●

●●●●●

●

●

●

●●●●

●

●

●

●●

●

●

●●

●●●●

●

●

●

●

●

●●●

●

●●●

●

●●●●

●

●●●●●●●●●●

●

●●●

●●

●

●

●●●●

●●

●●

●

●●

●

●●●●●

●

●

●

●●●●●●●

●●

●●

●

●●

●

●●

●●

●●●

●●

●●●●●●●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●●●

●●●●

●

●●●●●●●

●

●●●

●

●

●

●●●

●

●

●

●

●●●

●●●●●●●●●

●

●

●

●

●

●

●●

●●

●

●●

●

●●●●●●

●

●●●●●

●●

●●●

●●●

●●

●●●●●●●●●●

●

●

●●

●●●

●

●

●

●

●

●●●

●●

●●●●●●

●●

●●●●●●●

●●

●●●●●

●●●

●●●

●

●●●

●●

●

●

●

●

●●●

●●●

●●●●●

●

●●●

●

●●●●

●●

●●●

●

●●●

●

●●●●

●

●

●●

●●●

●

●●●

●

●●●●●

●●

●●●

●

●●

●

●

●●●

●●●

●

●●●●●●

●●●

●

●●●●●

●●

●●●

●

●

●●

●●

●●●

●●

●●●●

●

●●

●●

●●●●●

●

●●●●

●●

●

●

●●●●

●●

●●

●

●●●●

●

●●●●●●

●●●●

●

●

●●●●●●●●●●

●

●

●●

●●●

●

●●●●●●●●

●

●●

●

●●

●

●●

●

●●

●●

●●

●

●

●

●●●●●●

●●●

●●

●

●●●

●

●●●●●●

●●●

●●●●●

●

●

●●

●●

●

●●●●●

●

●

●

●

●

●●●

●

●

●

●●●●●●●

●

●●●●●

●

●●●●●●

●

●

●

●

●

●●

●

●●

●●

●●●●●●●

●●

●

●

●●●●●●

●

●●

●●

●●●●●

●

●●●●●●

●●

●●●●●●●●●●●

●

●●

●●●●●

●

●●●●

●

●●●●●●●●●●●

●

●●●

●

●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●

●

●●

●

●●●●●

●●

●●●●

●

●●

●

●●●

●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●●●

●

●●

●

●●●●●●●●●

●●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●

●

●●●●

●

●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●

●

●●

●

●●●●●●

●

●●●

●●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●

●

●●

●

●●●●●●●●●●●●●

●

●●●

●

●●●●

●

●●●●●

●

●●

●

●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Red: λ = 0.01, blue: λ = 15, dotted black: true underlying mean

37

Back to examples: big dense D

Consider a problem with a dense, generic D, e.g., as an observed
analyzing operator, or stemming from an equality-constrained lasso
problem

Primal prox is intractable, and a dual interior point method has
extremely costly Newton steps

But, provided that we can form f∗ (and relate the primal and dual
solutions), dual proximal gradient still features efficient iterations:
the gradient computation D∇f∗(−DTu) is more expensive than it
would be if D were sparse and structured, but still not anywhere as
expensive as solving a linear system in D

Its iterations simply repeat projecting u+ tD∇f∗(−DTu) onto the
box [−λ, λ]m, hence, especially if we do not need a highly accurate
solution, dual proximal gradient is the best method

38

Finally, consider a twist on this problem in which D is dense and
so massive that even fitting it in memory is a burden

Depending on f and its gradient, primal subgradient method might
be the only feasible algorithm; recall the subgradient calculation

g = ∇f(β) + λ
∑
i∈S

sign
(
(Dβ)i

)
·Di

where S is the set of all i such that (Dβ)i 6= 0

If λ is large enough so that many (Dβ)i = 0, then we only need to
fit a small part of D in memory (or, read a small part of D from a
file) to perform subgradient updates

Combined with perhaps a stochastic trick in evaluating either part
of g above, this could be effective at large scale

39

What did we learn from this?

From generalized lasso study (really, these are general principles):

• There is no single best method: performance depends greatly
structure of penalty, conjugate of loss, desired accuracy level,
sought regularization level

• Duality is your friend: dual approaches offer complementary
strengths, move linear transformation from nonsmooth penalty
into smooth loss, and strive in different regularization regime

• Regressors complicate duality: presence of predictor variables
in the loss complicate dual relationship, but proximal gradient
will reduce this to a problem without predictors

• Recognizing easy subproblems: if there is a subproblem that is
specialized and efficiently solvable, then work around it

• Limited memory at scale: for large problems, active set and/or
stochastic methods may be only option

40

Your toolbox will only get bigger

There are still many algorithms to be learned. E.g., for generalized
lasso problems, depending on the setting, we may instead use:

• Alternating direction method of multipliers

• Proximal Newton’s method

• Projected Newton’s method

• Exact path-following methods

Remember, you don’t have to find/design the perfect optimization
algorithm, just one that will work well for your problem!

For completeness, recall tools like cvx4 and tfocs5, if performance
is not a concern, or you don’t want to expend programming effort

4Grant and Boyd (2008), “Graph implementations for nonsmooth convex
problems”, http://cvxr.com/cvx/

5Beckter et al. (2011), “Templates for convex cone problems with
applications to sparse signal recovery”, http://cvxr.com/tfocs/

41

http://cvxr.com/cvx/
http://cvxr.com/tfocs/

Implementation tips

Implementation details are not typically the focus of optimization
courses, because in a sense, implementation skills are under-valued

Still an extremely important part of optimization. Considerations:

• Speed

• Robustness

• Simplicity

• Portability

First point doesn’t need to be explained. Robustness refers to the
stability of implementation across various use cases. E.g., suppose
our graph fused lasso solver supported edge weights. It performs
well when weights are all close to uniform, but what happens under
highly nonuniform weights? Huge and small weights, mixed?

42

Simplicity and portability are often ignored. An implementation
with 20K lines of code may run fast, but what happens when a bug
pops up? What happens when you pass it on to a friend? Tips:

• A constant-factor speedup is probably not worth a much more
complicated implementation, especially if the latter is hard to
maintain, hard to extend

• Speed of convergence to higher accuracy may be worth a loss
of simplicity

• Write the code bulk in a low-level language (like C or C++),
so that it can port to R, Matlab, Python, Julia, etc.

• Don’t re-implement standard routines, this is often not worth
your time, and prone to bugs. Especially true for numerical
linear algebra routines!

43

References

Some algorithms for generalized lasso problems:

• T. Arnold and R. Tibshirani (2014), “Efficient
implementations of the generalized lasso dual path algorithm”

• A. Barbero and S. Sra (2014), “Modular proximal optimization
for multidimensional total-variation regularization”

• S.-J. Kim, K. Koh, S. Boyd, and D. Gorinevsky (2009), “`1
trend filtering”

• A. Ramdas and R. Tibshirani (2014), “Fast and flexible
algorithms for trend filtering”

• Y.-X. Wang, J. Sharpnack, A. Smola, and R. Tibshirani
(2014), “Trend filtering on graphs”

44

Some implementations of generalized lasso algorithms:

• T. Arnold, V. Sadhanala, and R. Tibshirani (2015), glmgen,
https://github.com/statsmaths/glmgen

• T. Arnold and Ryan Tibshirani, genlasso,
http://cran.r-project.org/package=genlasso

• A. Barbero and S. Sra (2015), proxTV,
https://github.com/albarji/proxTV

• J. Friedman, T. Hastie, and R. Tibshirani (2008), glmnet,
http://cran.r-project.org/web/packages/glmnet

45

https://github.com/statsmaths/glmgen
http://cran.r-project.org/package=genlasso
https://github.com/albarji/proxTV
http://cran.r-project.org/web/packages/glmnet

