
Dual Methods and ADMM

Ryan Tibshirani
Convex Optimization 10-725/36-725

1

Last time: case study of generalized lasso

We studied generalized lasso problems:

min
β

f(β) + λ‖Dβ‖1

where f : Rn → R is a smooth, convex function and D ∈ Rm×n is
a penalty matrix

• We derived its dual problem, and considered applying all of the
algorithms we’ve learned so far to both its primal and its dual

• We saw that different algorithms had different strengths, and
were suitable for different situations

For the remainder of the course, we will study advanced methods,
which go beyond the first- and second-order paradigms

2

Conjugate functions

Reminder: given f : Rn → R, the function

f∗(y) = max
x

yTx− f(x)

is called its conjugate

• Conjugates appear frequently in dual programs, since

−f∗(y) = min
x

f(x)− yTx

• If f is closed and convex, then f∗∗ = f . Also,

x ∈ ∂f∗(y) ⇐⇒ y ∈ ∂f(x) ⇐⇒ x ∈ argmin
z

f(z)− yT z

• If f is strictly convex f , then ∇f∗(y) = argmin
z

f(z)− yT z

3

Outline

Today:

• Dual (sub)gradient methods

• Dual decomposition

• Augmented Lagrangians

• ADMM

4

Dual (sub)gradient methods

What if we can’t derive dual (conjugate) in closed form, but want
to utilize dual relationship? Turns out we can still use dual-based
subradient or gradient methods

Example: consider the problem

min
x

f(x) subject to Ax = b

Its dual problem is

max
u
−f∗(−ATu)− bTu

where f∗ is conjugate of f . Defining g(u) = f∗(−ATu), note that
∂g(u) = −A∂f∗(−ATu), and recall

x ∈ ∂f∗(−ATu) ⇐⇒ x ∈ argmin
z

f(z) + uTAz

5

Therefore the dual subgradient method (for maximizing the dual
objective) starts with an initial dual guess u(0), and repeats for
k = 1, 2, 3, . . .

x(k) ∈ argmin
x

f(x) + (u(k−1))TAx

u(k) = u(k−1) + tk(Ax
(k−1) − b)

where tk are step sizes, chosen in standard ways

Recall that if f is strictly convex, then f∗ is differentiable, and so
we get dual gradient ascent, which repeats for k = 1, 2, 3, . . .

x(k) = argmin
x

f(x) + (u(k−1))TAx

u(k) = u(k−1) + tk(Ax
(k−1) − b)

(difference is that each x(k) is unique, here). Proximal gradients
and acceleration carry through in similar manner

6

Covergence analysis

First recall that if f strongly convex with parameter d, then ∇f∗
Lipschitz with parameter 1/d

Proof: if f strongly convex and x is its minimizer, then

f(y) ≥ f(x) + d

2
‖y − x‖2, for all y

Hence defining xu = ∇f∗(u), xv = ∇f∗(v),

f(xv)− uTxv ≥ f(xu)− uTxu +
d

2
‖xu − xv‖22

f(xu)− vTxu ≥ f(xv)− vTxv +
d

2
‖xu − xv‖22

Adding these together, using Cauchy-Schwartz, and rearranging
shows that

‖xu − xv‖2 ≤
1

d
· ‖u− v‖2

7

Applying what we know about gradient descent: if f is strongly
convex with parameter d, then dual gradient ascent with constant
step size tk ≤ d converges at rate O(1/ε)

Is this a slow or fast rate, compared to what we would get out of
primal gradient descent? It’s actually essentially the same

• When f is strongly convex, primal gradient descent converges
at rate O(1/ε). But if we further assume that ∇f is Lipschitz,
then we get the linear rate O(log(1/ε))

• Note: the converse of the statement on the last slide is also
true: ∇f∗ being Lipschitz with parameter 1/d implies that f
is strongly convex with parameter d

• Hence assume f∗∗ = f . When f has Lipschitz gradient and is
strongly convex, the same is true about f∗, and dual gradient
ascent also converges at the linear rate O(log(1/ε))

8

Dual decomposition

Consider

min
x

B∑
i=1

fi(xi) subject to Ax = b

Here x = (x1, . . . xB) ∈ Rn divides into B blocks of variables, with
each xi ∈ Rni . We can also partition A accordingly

A = [A1, . . . AB], where Ai ∈ Rm×ni

Simple but powerful observation, in calculation of (sub)gradient:

x+ ∈ argmin
x

B∑
i=1

fi(xi) + uTAx

⇐⇒ x+i ∈ argmin
xi

fi(xi) + uTAixi, i = 1, . . . B

i.e., minimization decomposes into B separate problems

9

Dual decomposition algorithm: repeat for k = 1, 2, 3, . . .

x
(k)
i ∈ argmin

xi
fi(xi) + (u(k−1))TAixi, i = 1, . . . B

u(k) = u(k−1) + tk

(B∑
i=1

Aix
(k−1)
i − b

)

Can think of these steps as:

• Broadcast: send u to each of
the B processors, each
optimizes in parallel to find xi

• Gather: collect Aixi from
each processor, update the
global dual variable u

ux1

u x2 u x3

10

Example with inequality constraints:

min
x

B∑
i=1

fi(xi) subject to

B∑
i=1

Aixi ≤ b

Dual decomposition (projected subgradient method) repeats for
k = 1, 2, 3, . . .

x
(k)
i ∈ argmin

xi
fi(xi) + (u(k−1))TAixi, i = 1, . . . B

v(k) = u(k−1) + tk

(B∑
i=1

Aix
(k−1)
i − b

)
u(k) = (v(k))+

where (·)+ is componentwise thresholding, (u+)i = max{0, ui}

11

Price coordination interpretation (from Vandenberghe’s lecture
notes):

• Have B units in a system, each unit chooses its own decision
variable xi (how to allocate its goods)

• Constraints are limits on shared resources (rows of A), each
component of dual variable uj is price of resource j

• Dual update:

u+j = (uj − tsj)+, j = 1, . . .m

where s = b−
∑B

i=1Aixi are slacks

I Increase price uj if resource j is over-utilized, sj < 0

I Decrease price uj if resource j is under-utilized, sj > 0

I Never let prices get negative

12

Augmented Lagrangian

Disadvantage of dual methods: require strong conditions to ensure
primal iterates converge to solutions. Convergence properties can
be improved by utilizing augmented Lagrangian. Transform primal:

min
x

f(x) +
ρ

2
‖Ax− b‖22

subject to Ax = b

Clearly extra term (ρ/2) · ‖Ax− b‖22 does not change problem. Use
dual gradient ascent: repeat for k = 1, 2, 3, . . .

x(k) = argmin
x

f(x) + (u(k−1))TAx+
ρ

2
‖Ax− b‖22

u(k) = u(k−1) + ρ(Ax(k−1) − b)

(When, e.g., A has full column rank, primal is guaranteed strongly
convex)

13

Notice step size choice tk = ρ, for all k, in dual gradient ascent.
Why? Since x(k) minimizes f(x) + (u(k−1))TAx+ ρ

2‖Ax− b‖
2
2

over x, we have

0 ∈ ∂f(x(k)) +AT
(
u(k−1) + ρ(Ax(k) − b)

)
= ∂f(x(k)) +ATu(k)

This is the stationarity condition for the original primal problem;
can show under mild conditions that Ax(k) − b approaches zero
(i.e., primal iterates approach feasibility), hence in the limit KKT
conditions are satisfied and x(k), u(k) approach optimality

Advantage: much better convergence properties. Disadvantage:
lose decomposability! (Separability is compromised by augmented
Lagrangian ...)

14

Alternating direction method of multipliers

Alternating direction method of multipliers or ADMM: the best of
both worlds!

I.e., good convergence properties of augmented Lagrangians, along
with decomposability

Consider minimization problem

min
x

f1(x1) + f2(x2) subject to A1x1 +A2x2 = b

As before, we augment the objective

min
x

f1(x1) + f2(x2) +
ρ

2
‖A1x1 +A2x2 − b‖22

subject to A1x1 +A2x2 = b

15

Write the augmented Lagrangian as

Lρ(x1, x2, u) = f1(x1) + f2(x2) + uT (A1x1 +A2x2 − b) +
ρ

2
‖A1x1 +A2x2 − b‖22

Now ADMM repeats the steps, for k = 1, 2, 3, . . .

x
(k)
1 = argmin

x1
Lρ(x1, x

(k−1)
2 , u(k−1))

x
(k)
2 = argmin

x2
Lρ(x

(k)
1 , x2, u

(k−1))

u(k) = u(k−1) + ρ(A1x
(k)
1 +A2x

(k)
2 − b)

Note that the usual method of multipliers would have replaced the
first two steps by

(x
(k)
1 , x

(k)
2) = argmin

x1,x2
Lρ(x1, x2, u

(k−1))

16

Convergence guarantees

Under modest assumptions on f1, f2 (these do not require A1, A2

to be full rank), the ADMM iterates satisfy, for any ρ > 0:

• Residual convergence: r(k) = A1x
(k)
1 −A2x

(k)
2 − b→ 0 as

k →∞, i.e., primal iterates approach feasibility

• Objective convergence: f1(x
(k)
1) + f2(x

(k)
2)→ f?, where f? is

the optimal primal criterion value

• Dual convergence: u(k) → u?, where u? is a dual solution

For details, see Boyd et al. (2010). Note that we do not generically
get primal convergence, but this can be shown under more
assumptions

Convergence rate: not known in general, but known in few special
cases. Rough consensus seems to be that it behave like first-order
methods

17

Scaled form

It is often easier to express the ADMM algorithm in a scaled form,
where we replace the dual variable u by a scaled variable w = u/ρ.
In this parametrization, the ADMM steps are

x
(k)
1 = argmin

x1
f1(x1) +

ρ

2
‖A1x1 +A2x

(k−1)
2 − b+ w(k−1)‖22

x
(k)
2 = argmin

x2
f2(x2) +

ρ

2
‖A1x

(k)
1 +A2x2 − b+ w(k−1)‖22

w(k) = w(k−1) +A1x
(k)
1 +A2x

(k)
2 − b

Note that here the kth iterate w(k) is just given by a running sum
of residuals:

w(k) = w(0) +

k∑
i=1

(
A1x

(i)
1 +A2x

(i)
2 − b

)
18

Practicalities and tricks

Practical experience shows that ADMM usually obtains a relatively
accurate solution in a handful of iterations, but requires a very
large number of iterations for a highly accurate solution. This is
more evidence that it behaves like a first-order method

Choice of ρ can greatly influence practical convergence of ADMM:

• ρ too large → not enough emphasis on minimizing f1 + f2

• ρ too small → not enough emphasis on feasibility

Boyd et al. (2010) give a strategy for varying ρ that can be useful
in practice (but does not have convergence guarantees)

Like deriving duals, transforming a problem into that ADMM can
handle often requires a bit of trickery (and different forms can lead
to different algorithms)

19

Example: alternating projections

Consider finding a point in intersection of convex sets C,D ⊆ Rn,
i.e., solving

min
x

1C(x) + 1D(x)

To get this into ADMM form, we express it as

min
x,z

1C(x) + 1D(z) subject to x− z = 0

Each ADMM cycle involves two projections:

x(k) = argmin
x

PC
(
z(k−1) − w(k−1))

z(k) = argmin
z

PD
(
x(k) + w(k−1))

w(k) = w(k−1) + x(k) − z(k)

This is like the classical alternating projections method, but now
with a dual variable w. It is much more efficient

20

Example: generalized lasso regression

Given the usual y ∈ Rn, X ∈ Rn×p, and an additional D ∈ Rm×p,
the generalized lasso problem solves

min
β∈Rp

1

2
‖y −Xβ‖22 + λ‖Dβ‖1

This computationally harder than the lasso problem (with D = I);
recall our study on algorithms for this problem. We can rewrite as

min
β∈Rp, α∈Rm

1

2
‖y −Xβ‖22 + λ‖α‖1 subject to Dβ − α = 0

and ADMM gives us a simple algorithm for the generalized lasso:

β(k) = (XTX + ρDTD)+
(
XT y + ρDT (α(k−1) − w(k−1))

)
α(k) = Sλ/ρ(Dβ

(k) + w(k−1))

w(k) = w(k−1) +Dβ(k) − α(k)

21

Example: sum-of-norms regularization
Now consider

min
β∈Rp

1

2
‖y −Xβ‖22 + λ

G∑
g=1

‖βIg‖2

where each βIg ∈ R|Ig | is a sub-block of the full coefficient vector
β. Called a group lasso problem, or a sum-of-norms regularization
problem when we generalize the `2 norm above. Rewrite as

min
β∈Rp, α∈Rp

1

2
‖y −Xβ‖22 + λ

G∑
g=1

‖αIg‖2 subject to β − α = 0

andf ADMM updates become:

β(k) = (XTX + ρI)−1
(
XT y + ρ(α(k−1) − w(k−1))

)
α
(k)
Ig

= Rλ/ρ
(
β
(k)
Ig

+ w
(k−1)
Ig

)
, g = 1, . . . G

w(k) = w(k−1) + β(k) − α(k)

22

Notes:

• The matrix XTX + ρI is always invertible, regardless of X

• If we take its factorization (say QR), in O(p3) flops, then each
subsequent solve takes O(p2) flops

• The shrinkage operator Rt is defined as

Rt(x) =

(
1− t

‖x‖2

)
+

x

• Similar steps can be performed for a sum-of-norms problem, as
long as can solve for the prox operator of the individual norms

• An ADMM algorithm can also be developed for the case of
overlapping groups (which is otherwise quite a hard problem
to optimize!). See Boyd et al. (2010)

23

References

• S. Boyd and N. Parikh and E. Chu and B. Peleato and J.
Eckstein (2010), “Distributed optimization and statistical
learning via the alternating direction method of multipliers”

• L. Vandenberghe, Lecture Notes for EE 236C, UCLA, Spring
2011-2012

24

