
Fast Stochastic Optimization Algorithms for ML

Aaditya Ramdas

April 20, 2015

This lecture is about efficient algorithms for minimizing finite sums

min
w∈Rd

1

n

n∑

i=1

fi(w) or min
w∈Rd

1

n

n∑

i=1

fi(w) +
λ

2
‖w‖2

for known functions fi and given λ. This is not necessarily what we want to minimize, but
if we did, this lecture is relevant.

1 Brief Introduction

For linear prediction problems our aim is usually to minimize the true risk

min
w∈Rd

E(x,y)∼PL(w;x, y)

where P is a joint distribution on X × Y ⊆ Rd × R and w is a linear predictor, which is
a vector in Rd. More generally, we could minimize over functions f in some more complex
nonlinear function class, like a Reproducing Kernel Hilbert Space.

For regression, y is real valued, L is the often squared loss (but not always; for example see
Least Absolute Deviation regression) and w is the best linear fit to the data. For binary
classification, y is binary, L is often the 0/1 loss and w is the best hyperplane separating the
two sets of samples. Since the 0/1 loss is nonconvex, we often use convex upper bounds for
the 0/1 loss - examples of such surrogate losses include the logistic, hinge, exponential and
squared losses.

Since we don’t know the true underlying P but only observe its realization through samples
(data), we are often in a position where we choose to plug-in the empirical distribution P n

into the above expression, and instead minimize the empirical risk

min
w
F (w) :=

1

n

n∑

i=1

L(w;xi, yi)
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To avoid overfitting, we use regularizers like ‖w‖2. In this lecture, the loss of w on the i-th
data sample is represented as fi(w) := L(w;xi, yi) or fi(w) := L(w;xi, yi) + λ

2
‖w‖2.

There are a huge variety of settings:

1. fi could be differentiable (logistic) or nonsmooth (hinge) - in the latter case, subgra-
dients are necessary.

2. If differentiable, fi could have Lipschitz gradients.

3. fi could be strongly convex (say if regularizer is used), or F could be strongly convex
without each fi being strongly convex (like OLS).

4. For fixed time budget T , we can measure progress by looking at point error ‖wT −w∗‖2
or at function error F (wT )− F (w∗) or use w̄T = (w1 + ...+ wT )/T instead.

5. We may know T before hand, or may want the guarantee at any time point t (so the
step size cannot use T since it is unknown).

6. We may want to know how many steps we need to get an pre-specified accuracy of ε
for point error, or function error.

In this lecture, I will give talk more about the smooth and strongly convex setting. The
associated references are more complete, but we can do a full course discussing these.

2 (Stochastic) Gradient Descent (SGD/GD)

Gradient descent is a deterministic algorithm, but it is very expensive. Even though it only
needs L/λ log(1/ε) steps in the smooth and strongly convex setting (for a function error of ε),
it requires going through the whole dataset once at every iteration, taking nd time. Hence,
we prefer stochastic methods, that only access one datapoint at every iteration.

SGD just picks a random index from 1 to n and updates wt+1 = wt − η∇fi(wt) where
E∇fi(wt) = ∇F (wt). Note that this expectation is only over the randomness of uniformly
choosing an index, not over the data. Step size η could be constant or a decreasing stepsize
ηt (depending on if we know some problem dependent constants, or the time horizon).

Since it would take too much time to go into all problem variants, let it suffice to loosely
say that stochastic gradient methods have a function error suboptimality of O(1/T ) in the
strongly convex case, and of O(1/

√
T ) in the convex setting.

There are lower bounds that prove that, in the black box setting for convex optimization,
with only access to noisy gradients of some unknown function F , the aforementioned rates for
minimizing F are essentially optimal in T (other quantities matter too, most importantly the
dimension d, and the geometry of the set S if the minimization is being done over S).

So, are we done because we have matching lower bounds?
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3 The suboptimality of SGD for minimizing finite sums

In 2012, in a game-changing paper, Schmidt, Le-Roux and Bach introduced an algorithm
SAG that beat black box stochastic gradient methods, getting O(1/T ) rates for convex
functions, and O(ρT ) rates for strongly convex functions for some ρ < 1.

The reason they were able to get around the lower bounds, is because

1. We are not interested in minimizing any arbitrary F , but one that is a finite sum (n
is treated as fixed).

2. We are not restricted in choosing our stochastic gradient as ∇fi(wt), we can choose
any gt such that Egt = ∇F (wt).

3. As a side note, we don’t really need to have unbiased gradients, one can also tolerate
(small and decreasing) biases. In fact, SAG updates are not unbiased (leading to much
harder convergence proof).

Q: What is the point in choosing different unbiased estimators of the gradient? A: It’s the
variance that hurts the convergence rates!

What if we can (quickly) get estimates that are both (nearly) unbiased as well as variance
that decreases to zero? We would approach the rates of gradient descent! How do we do
this efficiently? A perfect method would be one which has

1. Provable rates for strongly convex functions as well as for convex (but not strongly
convex) functions

2. Works for smooth as well as non-smooth functions.

3. Works even with an extra proximal regularization term.

4. Has a low storage (memory footprint) cost.

5. Is adaptive to strong convexity (the same algorithm is optimal in both settings with
changing step-sizes or other parameters).

6. Has a simple proof.

4 SDCA, SVRG, SAG, SAGA, etc

Stochastic Dual Coordinate Ascent (Shai Shalev-Shwartz and Tong Zhang), Stochastic Variance-
Reduced Gradient (Rie Johson and Tong Zhang), Stochastic Average Gradient Added-an-A-
to-make-the-shortform-cool (Aaron Defazio, Francis Bach and Simon Lacoste-Julien) prob-
ably have the most relevant work - easy to Google. The last SAGA paper has a good
introduction relating the different methods, and putting them in context. Recently, Gur-
buzbalaban, Ozdaglar and Parrilo have a paper on a globally convergent incremental Newton
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method. Richtarik and coauthors have also extended this work. Let me give you a simple
example of the SDCA algorithm.

This is for minimizing

min
w∈Rd

F (w) :=
1

n

n∑

i=1

fi(w) +
λ

2
‖w‖2

where fi is convex with L-smooth gradients.

SDCA. We choose a step-size η < 1/λn, call β := ηλn < 1. Note that at optimality,

w∗ = − 1

λn

n∑

i=1

∇fi(w∗)

and what we will do is maintain “dual vectors” α1, ..., αn, so that

w(t) =
1

λn

n∑

i=1

α
(t)
i

The SDCA algorithm will make w(t) → w∗ and simultaneously α
(t)
i → −∇fi(w∗) =: α∗i .

We initialize these dual vectors arbitrarily (and update w(0)), and then at each time step,
we uniformly randomly pick an index from 1 to n, and perform

α
(t)
i = α

(t−1)
i − ηλn(∇fi(w(t−1)) + α

(t−1)
i )

and hence correspondingly

w(t) = w(t−1) − η(∇fi(w(t−1)) + α
(t−1)
i ) := w(t−1) − ηgt

That’s it! Super-simple! Is this even an SGD-like algorithm? Yes, because

Egt =
1

n

n∑

i=1

∇fi(w(t−1)) +
1

n

n∑

i=1

α
(t−1)
i = ∇F (w(t−1))

because we always maintain w(t−1) = 1
λn

∑n
i=1 α

(t−1)
i .

Theorem:

E

[
λ

2
‖w(t) − w∗‖2 +

1

2Ln

n∑

i=1

‖α(t)
i − α∗‖2

]
≤ e−ηλt

[
λ

2
‖w(0) − w∗‖2 +

1

2Ln

n∑

i=1

‖α(0)
i − α∗‖2

]

For example, if η = 1
L+λn

, then E[F (w(T ))]−F (w∗) ≤ ε when T = Ω(
(
L
λ

+ n
)

log(1/ε)).
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We saw that SDCA is like SGD since gt is an unbiased stochastic gradient. Does SDCA
really have lower variance than SGD? Yes! If you accept that the theorem statement is true
(independent proof), then we can show that the variance provably goes to zero:

E[‖gt‖2] = E‖∇fi(w(t−1)) + α∗i − α∗i + α
(t−1)
i ‖2

≤ 2E‖∇fi(w(t−1)) + α∗i ‖2 + 2E‖ − α∗i + α
(t−1)
i ‖2

Since α∗i = −∇fi(w∗), the first term ‖∇fi(w(t−1)) − ∇fi(w∗)‖2 ≤ L2‖w(t−1) − w∗‖2. The
theorem then implies that both the first and the second terms go to zero (and hence the
variance of the stochastic gradient term approaches zero - more like SGD at the start and
more like GD at the end!).

SVRG. SVRG is slightly more complex to introduce, because there is an inner and outer
loop. But here’s the main idea. When F (w) = 1

n

∑n
i=1 Fi(w),

∇F (w) = ∇F (w)−∇F (w̃) +∇F (w̃)

≈ ∇Fi(w)−∇Fi(w̃) +∇F (w̃) := gt

where w̃ is some nearby point to w (we batch-calculate ∇F (w̃) once in O(n) steps and
then use it for the next O(n) stochastic steps). In other words, instead of approximating
∇F (w) the gradient by ∇Fi(w), we approximate it by something which is still unbiased
but with lower variance. Indeed, using a similar argument as before, the authors show that
E‖gt‖2 ≤ 4L(F (w)− F (w∗) + F (w̃)− F (w∗))→ 0.

5 Optimality of SDCA/SVRG/SAGA/...?

Since each iteration takes time d, the total complexity of SDCA is
(
L
λ

+ n
)
d log(1/ε). Com-

pare this to vanilla non-stochastic gradient descent, which needs nd time per iteration, finish-
ing in L

λ
log(1/ε) iterations, giving a total complexity of nL

λ
d log(1/ε). Hence SDCA is much

better than both a naive stochastic algorithm like SGD and a purely deterministic algorithm
like GD. Note: accelerated GD has better dependence on condition number κ.

Note that the above convergence rate is great, but it is not provably optimal, since one
can derive an accelerated A-SDCA algorithm, which can then be further extended to an
accelerated and proximal AP-SDCA. Even that is not optimal, until we have matching lower
bounds. Agarwal and Bottou recently proved a (non-matching) lower bound for minimizing
finite sums of O(n +

√
n(κ− 1) log(1/ε)) calls to an incremental first order oracle (which

makes sense, because as n→∞, you get back to usual SGD model with high variance and
shouldn’t get a linear rate, and for the second term if fi = f , then there is no variance and
by Nesterov’s lower bounds it should get worse by at least

√
κ− 1 log(1/ε)), and this leaves

three natural possibilities:

1. The algorithms may not be optimal, or not optimal in all ranges of κ.
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2. Maybe these algorithms are indeed optimal - one may be able to prove even tighter
upper bounds for A-SDCA (or variants of SVRG or SAGA or ...).

3. One may be able to prove tighter lower bounds.

Agarwal and Bottou also make a very important argument — it is not easy to compare
batch and incremental/stochastic methods immediately. This is because the strong convexity
constant of F can be much larger than the strong convexity constant of fi, which was caused
by the regularization parameter λ (like for overcomplete ridge regression), and the Lipschitz
constant of the gradient of F can be smaller than the Lipschitz constant for fi, denoted
by L. Hence, even though methods like AP-SDCA are optimal in the worst case sense
(for arbitrary fi), current analysis can still sometimes place them worse than Nesterov’s
Accelerated Gradient Descent.

Time will definitely settle the issue, this research area is very active. Extensive experi-
ments will be needed, as well as better analysis where each fi is related to other fis by a
distributional assumption on the underlying data.

6 Comparing Methods
Performance Comparisons

Problem Algorithm Runtime

SVM
SGD d

�✏

AGD (Nesterov) dn
q

1
� ✏

Acc-Prox-SDCA d
⇣

n + min{ 1
� ✏ ,
q

n
�✏}
⌘

Lasso

SGD and variants d
✏2

Stochastic Coordinate Descent dn
✏

FISTA dn
q

1
✏

Acc-Prox-SDCA d
⇣

n + min{ 1
✏ ,
q

n
✏ }
⌘

Ridge Regression

Exact d2n + d3

SGD, SDCA d
�
n + 1

�

�

AGD dn
q

1
�

Acc-Prox-SDCA d
⇣

n + min{ 1
� ,
q

n
�}
⌘

T. Zhang Big Data Optimization 26 / 36Figure 1: Top figure is from Tong Zhang’s slides on accelerated proximal SDCA, middle
from the SAGA paper, bottom from Agarwal and Bottou’s lower bounds paper.
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SAGA SAG SDCA SVRG FINITO
Strongly Convex (SC) 3 3 3 3 3

Convex, Non-SC* 3 3 7 ? ?
Prox Reg. 3 ? 3[6] 3 7

Non-smooth 7 7 3 7 7
Low Storage Cost 7 7 7 3 7
Simple(-ish) Proof 3 7 3 3 3

Adaptive to SC 3 3 7 ? ?

Figure 1: Basic summary of method properties. Question marks denote unproven, but not experimentally
ruled out cases. (*) Note that any method can be applied to non-strongly convex problems by adding a small
amount of L2 regularisation, this row describes methods that do not require this trick.

SAGA: midpoint between SAG and SVRG/S2GD

In [5], the authors make the observation that the variance of the standard stochastic gradient (SGD)
update direction can only go to zero if decreasing step sizes are used, thus preventing a linear conver-
gence rate unlike for batch gradient descent. They thus propose to use a variance reduction approach
(see [7] and references therein for example) on the SGD update in order to be able to use constant
step sizes and get a linear convergence rate. We present the updates of their method called SVRG
(Stochastic Variance Reduced Gradient) in (6) below, comparing it with the non-composite form
of SAGA rewritten in (5). They also mention that SAG (Stochastic Average Gradient) [1] can be
interpreted as reducing the variance, though they do not provide the specifics. Here, we make this
connection clearer and relate it to SAGA.

We first review a slightly more generalized version of the variance reduction approach (we allow the
updates to be biased). Suppose that we want to use Monte Carlo samples to estimate EX and that
we can compute efficiently EY for another random variable Y that is highly correlated with X . One
variance reduction approach is to use the following estimator ✓↵ as an approximation to EX: ✓↵ :=
↵(X�Y )+EY , for a step size ↵ 2 [0, 1]. We have that E✓↵ is a convex combination of EX and EY :
E✓↵ = ↵EX + (1� ↵)EY . The standard variance reduction approach uses ↵ = 1 and the estimate
is unbiased E✓1 = EX . The variance of ✓↵ is: Var(✓↵) = ↵2[Var(X) + Var(Y ) � 2 Cov(X, Y )],
and so if Cov(X, Y ) is big enough, the variance of ✓↵ is reduced compared to X , giving the method
its name. By varying ↵ from 0 to 1, we increase the variance of ✓↵ towards its maximum value
(which usually is still smaller than the one for X) while decreasing its bias towards zero.

Both SAGA and SAG can be derived from such a variance reduction viewpoint: here X is the SGD
direction sample f 0

j(x
k), whereas Y is a past stored gradient f 0

j(�
k
j ). SAG is obtained by using

↵ = 1/n (update rewritten in our notation in (4)), whereas SAGA is the unbiased version with ↵ = 1
(see (5) below). For the same �’s, the variance of the SAG update is 1/n2 times the one of SAGA,
but at the expense of having a non-zero bias. This non-zero bias might explain the complexity of
the convergence proof of SAG and why the theory has not yet been extended to proximal operators.
By using an unbiased update in SAGA, we are able to obtain a simple and tight theory, with better
constants than SAG, as well as theoretical rates for the use of proximal operators.

(SAG) xk+1 = xk � �

"
f 0

j(x
k) � f 0

j(�
k
j )

n
+

1

n

nX

i=1

f 0
i(�

k
i )

#
, (4)

(SAGA) xk+1 = xk � �

"
f 0

j(x
k) � f 0

j(�
k
j ) +

1

n

nX

i=1

f 0
i(�

k
i )

#
, (5)

(SVRG) xk+1 = xk � �

"
f 0

j(x
k) � f 0

j(x̃) +
1

n

nX

i=1

f 0
i(x̃)

#
. (6)

The SVRG update (6) is obtained by using Y = f 0
j(x̃) with ↵ = 1 (and is thus unbiased – we note

that SAG is the only method that we present in the related work that has a biased update direction).
The vector x̃ is not updated every step, but rather the loop over k appears inside an outer loop, where
x̃ is updated at the start of each outer iteration. Essentially SAGA is at the midpoint between SVRG
and SAG; it updates the �j value each time index j is picked, whereas SVRG updates all of �’s as
a batch. The S2GD method [8] has the same update as SVRG, just differing in how the number of
inner loop iterations is chosen. We use SVRG henceforth to refer to both methods.

3

AGARWAL AND BOTTOU

Algorithm Batch complexity Adaptive?

ASDCA, SDPC
(Shalev-Shwartz and Zhang, 2014)
(Zhang and Xiao, 2014)

Õ
((
1+
√

L−µ
µn

)
log 1ε

)
no

SAG
(Schmidt et al., 2013)

Õ
((
1+ L

µ f n

)
log 1ε

)
to µ f

AGM†

(Nesterov, 2007)
Õ
(√

Lf
µ f
log 1ε

)
to µ f and L f

Table 1: A comparison of the batch complexities of different methods. A method is adaptive to
µ f or L f , if it does not need the knowledge of these parameters to run the algorithm and
obtain the stated complexity upper bound. †Although the simplest version of AGM does
require the specification of µ f and L f , Nesterov also discusses an adaptive variant with the
same bound up to additional logarithmic factors.

error for the function f is smaller than ε . When defining batch complexity, Zhang and Xiao (2014)
observed that the incremental and batch methods have dependence on L versus L f , but did not
consider the different strong convexities that play a part for different algorithms. Doing so, we see
that the batch complexities can be summarized as in Table 1.

Based on the table, we see two main points of difference. First, the incremental methods rely
on the smoothness of the individual components. That this is unavoidable is clear, since even the
worst case lower bound of Theorem 1 depends on L and not L f . As Zhang and Xiao (2014) observe,
L f can in general be much smaller than L. They attempt to address the problem to some extent by
using non-uniform sampling, thereby making sure that the best of the gi and the worst of the gi have
a similar smoothness constant under the reweighting. This does not fully bridge the gap between L
and L f as we will show next. However, more striking is the difference in the lower curvature across
methods. To the best of our knowledge, all the existing analyses of coordinate ascent require a clear
isolation of strong convexity, as in the function definition (1). These methods then rely on using µ
as an estimate of the curvature of f , and cannot adapt to any additional curvature when µ f is much
larger than µ . Our next example shows this can be a serious concern for many machine learning
problems.

In order to simplify the following discussion we restrict ourselves to perhaps the most basic
machine learning optimization problem, the regularized least-squares regression, also known as
ridge regression:

f (x) =
µ
2

∥x∥2+
1
n

n

∑
i=1

gi(x) with gi(x) = (⟨ai,x⟩− bi)2 , (2)

where ai is a data point and bi is a scalar target for prediction. It is then easy to see that g′′
i (x) = ai a⊤

i
so that f ∈ Fµ ,L

n (Ω) with L = maxi(µ +∥ai∥2). To simplify the comparisons, assume that ai ∈ Rd

are drawn uniformly from the sphere ∥ai∥ = R. Therefore E[ai] = 0, E[aia⊤
i ] = Σ= (R2/d) I where

I is the identity matrix, and L= µ+R2. Since each function gi has the same smoothness constant in

6

Figure 2: Top figure is from Tong Zhang’s slides on accelerated proximal SDCA, middle
from the SAGA paper, bottom from Agarwal and Bottou’s lower bounds paper.
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