Fast Stochastic Optimization Algorithms for ML

Aaditya Ramdas

April 20, 2015

This lecture is about efficient algorithms for minimizing finite sums

mm—Zf, or mln—Zf, —||w||2
weRL 1 weRe N

for known functions f; and given \. This is not necessarily what we want to minimize, but
if we did, this lecture is relevant.

1 Brief Introduction

For linear prediction problems our aim is usually to minimize the true risk

;Ié%}iE J:y)NPL(w T y)

where P is a joint distribution on X x Y € R? x R and w is a linear predictor, which is
a vector in R?. More generally, we could minimize over functions f in some more complex
nonlinear function class, like a Reproducing Kernel Hilbert Space.

For regression, y is real valued, L is the often squared loss (but not always; for example see
Least Absolute Deviation regression) and w is the best linear fit to the data. For binary
classification, y is binary, L is often the 0/1 loss and w is the best hyperplane separating the
two sets of samples. Since the 0/1 loss is nonconvex, we often use convex upper bounds for
the 0/1 loss - examples of such surrogate losses include the logistic, hinge, exponential and
squared losses.

Since we don’t know the true underlying P but only observe its realization through samples
(data), we are often in a position where we choose to plug-in the empirical distribution P™
into the above expression, and instead minimize the empirical risk

mlnF ZL (w; 3, ;)

To avoid overfitting, we use regularizers like ||w]||?. In this lecture, the loss of w on the i-th
data sample is represented as f;(w) := L(w; z;,y;) or fi(w) := L(w;z;, y;) + 5lw|?.

There are a huge variety of settings:

1. f; could be differentiable (logistic) or nonsmooth (hinge) - in the latter case, subgra-
dients are necessary.

2. If differentiable, f; could have Lipschitz gradients.

3. fi could be strongly convex (say if regularizer is used), or F' could be strongly convex
without each f; being strongly convex (like OLS).

4. For fixed time budget T', we can measure progress by looking at point error ||wp —w*||?
or at function error F(wy) — F(w*) or use wr = (wy + ... + wy)/T instead.

5. We may know 7T before hand, or may want the guarantee at any time point ¢ (so the
step size cannot use T since it is unknown).

6. We may want to know how many steps we need to get an pre-specified accuracy of €
for point error, or function error.

In this lecture, I will give talk more about the smooth and strongly convex setting. The
associated references are more complete, but we can do a full course discussing these.

2 (Stochastic) Gradient Descent (SGD/GD)

Gradient descent is a deterministic algorithm, but it is very expensive. Even though it only
needs L/Alog(1/¢€) steps in the smooth and strongly convex setting (for a function error of €),
it requires going through the whole dataset once at every iteration, taking nd time. Hence,
we prefer stochastic methods, that only access one datapoint at every iteration.

SGD just picks a random index from 1 to n and updates w3 = wy — nV fi(w;) where
EV fi(w;) = VF(w;). Note that this expectation is only over the randomness of uniformly
choosing an index, not over the data. Step size i could be constant or a decreasing stepsize
n; (depending on if we know some problem dependent constants, or the time horizon).

Since it would take too much time to go into all problem variants, let it suffice to loosely
say that stochastic gradient methods have a function error suboptimality of O(1/T") in the
strongly convex case, and of O(1/v/T) in the convex setting.

There are lower bounds that prove that, in the black box setting for convex optimization,
with only access to noisy gradients of some unknown function F', the aforementioned rates for
minimizing F are essentially optimal in 7" (other quantities matter too, most importantly the
dimension d, and the geometry of the set S if the minimization is being done over 5).

So, are we done because we have matching lower bounds?

3 The suboptimality of SGD for minimizing finite sums

In 2012, in a game-changing paper, Schmidt, Le-Roux and Bach introduced an algorithm
SAG that beat black box stochastic gradient methods, getting O(1/T) rates for convex
functions, and O(pT) rates for strongly convex functions for some p < 1.

The reason they were able to get around the lower bounds, is because

1. We are not interested in minimizing any arbitrary F', but one that is a finite sum (n
is treated as fixed).

2. We are not restricted in choosing our stochastic gradient as V f;(w;), we can choose
any ¢; such that Eg; = VF(wy).

3. As a side note, we don’t really need to have unbiased gradients, one can also tolerate
(small and decreasing) biases. In fact, SAG updates are not unbiased (leading to much
harder convergence proof).

Q: What is the point in choosing different unbiased estimators of the gradient? A: It’s the
variance that hurts the convergence rates!

What if we can (quickly) get estimates that are both (nearly) unbiased as well as variance
that decreases to zero? We would approach the rates of gradient descent! How do we do
this efficiently? A perfect method would be one which has

1. Provable rates for strongly convex functions as well as for convex (but not strongly
convex) functions

Works for smooth as well as non-smooth functions.
Works even with an extra proximal regularization term.

Has a low storage (memory footprint) cost.

AR R O

Is adaptive to strong convexity (the same algorithm is optimal in both settings with
changing step-sizes or other parameters).

6. Has a simple proof.

4 SDCA, SVRG, SAG, SAGA, etc

Stochastic Dual Coordinate Ascent (Shai Shalev-Shwartz and Tong Zhang), Stochastic Variance-
Reduced Gradient (Rie Johson and Tong Zhang), Stochastic Average Gradient Added-an-A-
to-make-the-shortform-cool (Aaron Defazio, Francis Bach and Simon Lacoste-Julien) prob-
ably have the most relevant work - easy to Google. The last SAGA paper has a good
introduction relating the different methods, and putting them in context. Recently, Gur-
buzbalaban, Ozdaglar and Parrilo have a paper on a globally convergent incremental Newton

method. Richtarik and coauthors have also extended this work. Let me give you a simple
example of the SDCA algorithm.

This is for minimizing

min, F(u }jf + 2l

weR?
where f; is convex with L-smooth gradients.

SDCA. We choose a step-size n < 1/An, call 5 :=nAn < 1. Note that at optimality,

and what we will do is maintain “dual vectors” aq, ..., a,,, so that

1
(t) _ (t)
w o Z o

=1

The SDCA algorithm will make w® — w* and simultaneously ozl(t) — =V fi(w*) =: af.

We initialize these dual vectors arbitrarily (and update w(0)), and then at each time step,
we uniformly randomly pick an index from 1 to n, and perform

ot — ot nAn(V fi(w (t—1)) + az(tfl))
and hence correspondingly

w = w0 = (VL) + oY) = w7 — g

)

That’s it! Super-simple! Is this even an SGD-like algorithm? Yes, because

1o I
Egi=— > Vi@ ™)+ -3 "V = VF(w)
i=1 =1

t—=1) _ 1y a(tfl).

because we always maintain w! 5 -
n Lai=

Theorem:

A 1 <
n 2 * (|2 —nAt | 0) %2) 2
2 — w2 4 ﬂ,§]m aHISe"[ym uw-+ﬁzgymi o

For example, if n = then E[F(w™)] - F(w*) < e when T = Q((% + n) log(1/e)).

L+)\ ’

We saw that SDCA is like SGD since g; is an unbiased stochastic gradient. Does SDCA
really have lower variance than SGD? Yes! If you accept that the theorem statement is true
(independent proof), then we can show that the variance provably goes to zero:

Elllge|?) = E[V/fi(w* V) +a; —af+al"|?
< 2BV fi(w V) + of|P + 2E]| - o + o 7V

Since af = —V f;(w*), the first term ||V fi(w* V) — Vf;(w*)||> < L?|w®Y — w*||>. The
theorem then implies that both the first and the second terms go to zero (and hence the

variance of the stochastic gradient term approaches zero - more like SGD at the start and
more like GD at the end!).

SVRG. SVRG is slightly more complex to introduce, because there is an inner and outer
loop. But here’s the main idea. When F(w) = 13" | Fi(w),

VF(w) = VF(w)—-VF(w)+ VF(w
VF(w) — VF(w) + VF(0) := g

where @ is some nearby point to w (we batch-calculate VF(w) once in O(n) steps and
then use it for the next O(n) stochastic steps). In other words, instead of approximating
VF(w) the gradient by VF;(w), we approximate it by something which is still unbiased
but with lower variance. Indeed, using a similar argument as before, the authors show that
El|g.||* < 4L(F(w) — F(w*) + F(@) — F(w*)) = 0.

5 Optimality of SDCA/SVRG/SAGA/...?7

Since each iteration takes time d, the total complexity of SDCA is (£ + n) dlog(1/€). Com-
pare this to vanilla non-stochastic gradient descent, which needs nd time per iteration, finish-
ing in % log(1/e€) iterations, giving a total complexity of n%dlog(l/e). Hence SDCA is much
better than both a naive stochastic algorithm like SGD and a purely deterministic algorithm
like GD. Note: accelerated GD has better dependence on condition number k.

Note that the above convergence rate is great, but it is not provably optimal, since one
can derive an accelerated A-SDCA algorithm, which can then be further extended to an
accelerated and proximal AP-SDCA. Even that is not optimal, until we have matching lower
bounds. Agarwal and Bottou recently proved a (non-matching) lower bound for minimizing
finite sums of O(n + y/n(xk — 1)log(1/€)) calls to an incremental first order oracle (which
makes sense, because as n — 00, you get back to usual SGD model with high variance and
shouldn’t get a linear rate, and for the second term if f; = f, then there is no variance and
by Nesterov’s lower bounds it should get worse by at least v/x — 11log(1/¢)), and this leaves
three natural possibilities:

1. The algorithms may not be optimal, or not optimal in all ranges of .

5

2. Maybe these algorithms are indeed optimal - one may be able to prove even tighter

upper bounds for A-SDCA (or variants of SVRG or SAGA or ...).
3. One may be able to prove tighter lower bounds.

Agarwal and Bottou also make a very important argument — it is not easy to compare
batch and incremental /stochastic methods immediately. This is because the strong convexity
constant of F' can be much larger than the strong convexity constant of f;, which was caused
by the regularization parameter A (like for overcomplete ridge regression), and the Lipschitz
constant of the gradient of I’ can be smaller than the Lipschitz constant for f;, denoted
by L. Hence, even though methods like AP-SDCA are optimal in the worst case sense
(for arbitrary f;), current analysis can still sometimes place them worse than Nesterov’s
Accelerated Gradient Descent.

Time will definitely settle the issue, this research area is very active. Extensive experi-
ments will be needed, as well as better analysis where each f; is related to other f;s by a
distributional assumption on the underlying data.

6 Comparing Methods

Problem Algorithm Runtime
SGD N
SVM AGD (Nesterov) dny /<L
Acc-Prox-SDCA d (n +min{s-, /&<)
SGD and variants 4
. . dn
Lasso Stochastic Coordinate Descent <
FISTA dn, /1
Acc-Prox-SDCA d <n +min{ 1, \ﬁ })
Exact d’n+d°
y
Ridge Regression SGD, SDCA d(n+3)
AGD dn, /1
Acc-Prox-SDCA d (n +min{Z, \@ })

Figure 1: Top figure is from Tong Zhang’s slides on accelerated proximal SDCA, middle
from the SAGA paper, bottom from Agarwal and Bottou’s lower bounds paper.

SAGA SAG SDCA SVRG FINITO
Strongly Convex (SC) v v v v v
Convex, Non-SC* Ve v X ? ?
Prox Reg. v ? /6] v X
Non-smooth X X v X X
Low Storage Cost X X X v/ X
Simple(-ish) Proof v X v v v
Adaptive to SC v v X ? ?
Algorithm Batch complexity Adaptive?
ASDCA, SDPC ~ [L—u 1
(Shalev-Shwartz and Zhang, 2014) O ((1 + W) log E) no
(Zhang and Xiao, 2014)
2 L 1
SAG O((1+ ;) 108t) oty
(Schmidt et al., 2013)
~ L, 1
AGM' (’)(,/I;logg> to us and Ly

(Nesterov, 2007)

Figure 2: Top figure is from Tong Zhang’s slides on accelerated proximal SDCA, middle
from the SAGA paper, bottom from Agarwal and Bottou’s lower bounds paper.

	Brief Introduction
	(Stochastic) Gradient Descent (SGD/GD)
	The suboptimality of SGD for minimizing finite sums
	SDCA, SVRG, SAG, SAGA, etc
	Optimality of SDCA/SVRG/SAGA/...?
	Comparing Methods

