	Gradient	Subgrad	Prox grad	Newton	quasi-Newton
Criterion	smooth f	any f	smooth	doubly smooth	doubly smooth
			+ simple,	f	f
			f = g + h		
Constraints	projection	projection	constrained	equality con-	unconstrained
	onto con-	onto con-	prox opera-	straints	
	straint set	straint set	tor		
Opti pa-	fixed	diminishing	fixed	pure step size	line search
rameters	step size	step sizes	step size	(t = 1) or line	
	$(t \leq 1/L)$		$(t \leq 1/L)$	search	
	or line		or line		
	search		search		
Iteration	cheap	cheap	moderately	moderate to	moderately
cost	(compute	(compute	cheap	expensive	cheap (com-
	gradient)	subgradi-	(evaluate	(compute Hes-	pute gradients,
		ent)	prox)	sian and solve	inner products;
				linear system)	no matrix
					inversion)
Rate	$O(\frac{1}{\epsilon})$	$O(\frac{1}{\epsilon^2})$	$O(\frac{1}{\epsilon})$	$O(\log \log(\frac{1}{\epsilon}))$	superlinear
	$\left[O\left(\frac{1}{\sqrt{\epsilon}}\right)\right]$	e-	$O(\frac{1}{\epsilon})$ $[O(\frac{1}{\sqrt{\epsilon}})$	(local	rate, n-step
	with ac-		with ac-	quadratic	quadratic rate
	celeration,		celeration,	convergence	(n steps are
	$O(\log(\frac{1}{\epsilon}))$		$O(\log(\frac{1}{\epsilon}))$	rate)	as effective as
	with strong		with strong		one Newton
	convexity]		convexity]		step)

	Barrier method	Primal-dual IPM	ADMM	Coord descent
Criterion	doubly smooth f	doubly smooth f	block separable, f(x, z) = g(x) + h(z)	smooth + coordinate-wise separable
Constraints	doubly smooth h_i (inequality constraints)	doubly smooth h_i (inequality constraints)	eq constraints (always) & ineq constraints (sometimes)	coordinate- wise separable constraints
Opti pa- rameters	inner loop: fixed step size or use line search, outer loop: diverging barrier parameter	line search for step size & diverging barrier parameter	fixed aug- mented La- grange parame- ter (theory), or varied by itera- tion (practice)	none!
Iteration cost	expensive to very expensive (one iteration solves one smoothed problem, by Newton)	moderate to expensive (one iteration per- forms one Newton step)	cheap to ex- pensive (one iteration solves two subprob- lems, makes a dual step)	cheap to expen- sive (one iter- ation performs a full cycle of coordinate min- imizations)
Rate	$O(\log(\frac{1}{\epsilon}))$ (both in terms of iterations and Newton steps)	$O(\log(\frac{1}{\epsilon}))$	not known in general, known in special cases; practically tends to behave like first-order methods	not known in general, known in special cases; practically tends to behave faster than first-order methods