
10-725/36-725: Convex Optimization Spring 2015

Lecture 2: January 14
Lecturer: Ryan Tibshirani Scribes: Qi Guo, Sangwon Hyun (Justin)

2.1 Outline

Last time, we discussed optimization problems and why convexity is our friend. In short, it is because convex
optimization problems are definitely solvable with known methods, among other desirable properties. It also
sometimes provides insight about the statistical properties of the problem in hand. Today, we cover: Convex
sets, convexity-preserving operations, convex functions and examples.

2.2 Convex Sets

1. Definition

A convex set is defined as C ⊆ Rn such that x, y ∈ C =⇒ tx + (1 − t)y ∈ C for all 0 ≤ t ≤ 1. In
other words, a line segment joining any two elements lies entirely in the set. Informally, every point in
a convex set can ‘see’ every other point in the set.

Figure 2.1: Examples of convex sets

A convex combination of x1, · · · , xk ∈ Rn is any linear combination:

k∑
i=1

θixi = θ1x1 + · · ·+ θkxk

with θi ≥ 0, i = 1, · · · , k and
∑k

i=1 θ1 = 1.

A convex hull of a set C is the set of all convex combination of its elements. A convex hull is always
convex, and any convex combination of points in conv(C) is also

conv(C) = {
k∑

i=1

θixi : k ∈ {1, 2, · · · }, θi ≥ 0,

k∑
i=1

θi = 1, xi ∈ C}
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2. Examples
Some examples are:

• Norm ball: {x : ‖x‖ ≤ r} for a given norm ‖ · ‖, radius r.

• Hyperplane: {x : aTx = b} for given vector a, b.

• Halfspace: {x : aTx ≤ b} for given vector a, b.

• Affine Space: {x : Ax = b} for a given matrix A and vector b

• Polyhedron: {x : Ax ≤ b} for matrix A and vector b. You can visualize every row of A as
a normal vector for each hyperplane involved! Also, {x : Ax ≤ b, Cx = d} is also a polyhedron
because the equality Cx = d can be made into two inequalities Cx ≥ d and Cx ≤ d.

Figure 2.2: Polyhedron, with each row of A equals to a1, · · · , an.

• Simplex: is a special case of polyhedra, given by the convex hull of a set of affinely independent
points x0, · · · , xk (i.e. conv{x0, · · ·xk}). Affinely independent means that x1 − x0, · · · , xk − x0
are linearly independent. A canonical example is the probability simplex

conv{e1, · · · , en} = {ω : ω ≥ 0, 1Tω = 1}

Tip: these are all easy to think about in R2! and after R3, the geometrical intuition is all similar!

• Convex Cones:
A cone is C ∈ Rn such that

x ∈ C =⇒ tx ∈ C for all t ≥ 0

Figure 2.3: Example of cone.
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A convex cone is a cone that is also convex i.e.,

x1, x2 ∈ C =⇒ t1x1 + t2x2 ∈ C for all t1, t2 ≥ 0

A conic combination of points x1, · · · , xk ∈ Rn is, for any θi ≥ 0, i = 1, · · · , k, any linear combi-
nation

θ1x1 + · · ·+ θkxk

A conic hull collects all conic combinations of x1, · · · , xk (or a general set C

conic({x1, · · · , xk}) = {θ1x1 + · · ·+ θkxk, θi ≥ 0, i = 1, · · · , k}
Some examples of convex cones are of special interest, because they appear frequently.

– Norm Cone A norm cone is {(x, t) : ‖x‖ ≤ t}. Under the `2 norm ‖ · ‖2, this is called a
second-order cone.

Figure 2.4: Example of second order cone.

– Normal Cone Given set C and point x ∈ C, a normal cone is

NC(x) = {g : gTx ≥ gT y, for all y ∈ C}

In the figure, for the corner point x depicted here, the points g in the shaded region have
larger dot product with x than with any other point.

Figure 2.5: Normal Cone
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– PSD cone: A positive semidefinite cone is the set of positive definite symmetric matrices.
(Sn are n× n symmetric matrices)

Sn+ = {X ∈ Sn : X � 0}

You can verify that all of these are convex sets.

3. Properties of Convex Sets
We now cover some useful properties of Convex Sets. The first one is the separating hyperplane
theorem, which states that two convex sets have a separating hyperplane between them:

Figure 2.6: Separating hyperplane

Formally, if C,D are nonempty disjoint convex sets, then there exists a, b such that

C ⊆ {x : aTx ≤ b}
D ⊆ {x : aTx ≥ b}

Similarly, the supporting hyperplane theorem states that any boundary point of a convex set has
a supporting hyperplane passing through it:

Figure 2.7: Supporting hyperplane
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Formally, given a nonempty convex set C, for every point x0 ∈ bd(C), there exists a such that

C ⊆ {x : aTx ≤ aTx0}

See 2.5 of BV for more.

2.3 Operations Preserving Convexity

There are several operations that can be done on vectors, matrices or sets that preserve convexity.

• Intersection of convex sets is convex.

• Scaling and Translation: for convex set C, aC + b = {ax+ b : x ∈ C} is also convex.

• Affine image for convex set C and affine function f(x) = Ax+ b, the following is convex:

f(C) = {f(x) : x ∈ C}

• Affine Preimages similarly, for convex set D and affine function f (not necessarily invertable), the
following is convex:

f−1(D) = {x : f(x) ∈ D}

• Perspective image and preimage
For function P : Rn × R++ → Rn (where R++ is positive reals),

P (x, z) = x/z

for z > 0 is a perspective function. If C ⊆ dom(f) is convex, then so is P (C), and if D is convex, so
is P−1(D).

• Linear-fractional image and preimage A linear fractional function is a perspective map composed
with an affine function, defined on cTx+ d > 0:

f(x) =
Ax+ b

cTx+ d

The image and preimage of this function are both convex.

2.4 Examples of Convex Sets + Operations

Three major examples are given: Linear matrix inequality solution set, the Fantope, and Conditional prob-
ability set

• Example 1) Linear matrix inequality solution set

Given symmetric matrices A1, · · · , Ak, B ∈ Sn, the set of points satisfying a linear matrix inequality
is:

C = {x : x1A1 + · · ·+ xkAk � B} = {x : B −
∑
i

xiAi � 0} (2.1)
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There are two ways to prove that C is convex. The first approach is to directly verify that x, y ∈ C ⇒
tx+ (1− t)y ∈ C. This follows by checking that, for any v,

vT (B −
k∑

i=1

(txi + (1− t)yi)Ai)v = vT (tB + (1− t)B −
k∑

i=1

(txi + (1− t)yi)Ai)v

= t(vT (B −
∑
i

xiAi)v) + (1− t)(vT (B −
∑
i

yiAi)v)

≥ 0

Another (smarter) approach is to let f : Rk → Sn, f(x) = B−
∑

i xiAi, and note that this is the affine
preimage of a convex set C = f−1(Sn+), from the right side of 2.1.

• Example 2) Fantope

A fantope of order k for some integer k ≥ 0 is:

F = {Z ∈ Sn : 0 � Z � I, tr(Z) = k}

= {Z ∈ Sn : 0 ≤ λ1(Z) ≤ · · ·λn(Z) ≤ 1,
∑

λi = k}

One approach to proving this is convex is the usual way: to take two matrices 0 � Z,W � I and
tr(Z) = tr(W ) = k implies the same for tZ + (1− t)W . A smarter approach is to recognize that this
fantope is:

F = {Z ∈ Sn : Z � 0} ∪ {Z ∈ Sn : Z � I} ∪ {Z ∈ Sn : tr(Z) = k}

which is an intersection of linear inequality and equality constraints, hence like a polyhedron but for
matrices. (the last set is a linear equality)

• Example 3) Conditional probability set
Let U, V be random variables over {1, · · · , n} and {1, · · · ,m}. Let C ∈ Rn×m be a set of joint
distributions (probabilities) for U, V . i.e.:

pij = P(U = i, V = j)

and D contain conditional distributions (probabilities):

qij = P(U = i|V = j)

Assume C is convex. Let’s prove that D is convex. The set D can be rewritten as an image of a linear
fractional function:

D = {q ∈ Rn×m : qij =
pij∑n

k=1 pkj
for some p ∈ C} = f(C)

Hence it is convex.

2.5 Convex Functions

If we know sets really well, we can always derive thing for functions.
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2.5.1 Definition

Definition 2.1. A convex function sis a function f : Rn → R, such that dom(f) ⊆ Rn is convex, and

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

, for 0 ≤ t ≤ 1.

Figure 2.8: Graph of a convex function. The line segment betwen any two points on the graph lies above
the graph.

In words, f lies below the line segment joining f(x), f(y).

A concave function is where the reverse is true, i.e.,

f concave⇐⇒ −f convex

There are some important modifiers:

• Strictly Convex: A function f is strictly convex if f(tx + (1 − t)y) < tf(x) + (1 − t)f(y) for x 6= y
and 0 < t < 1. In words, f is convex and has greater curvature than a linear function. With the strict
inequality, the line segmement joing f(x), f(y) is strictly above the function inside the interval.

• Strongly Convex: A function f is strongly convex with parameter m > 0 if f − m
2 ‖x‖

2
2 is convex. In

words, f is at least as convex as a quadratic fuction.

From the above definition, we can conclude that

strong convexity =⇒ strict convexity =⇒ convexity

. There are definitions analogously for concave functions, just plugin −f .

2.5.2 Examples of convex function

Following are some exmaples:

• Some univariate functions:
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– exponential function eax is convex for any a,

– power function xa is convex for a ≥ 1 or a ≤ 0, power function is concave for 0 ≤ a ≤ 1

– logrithmic function log x is concave.

• Affine function: aT + b is both convex and concave,

• Quadratic function: 1
2x

TQx+ bTx+ c is convex provided that Q � 0 (positive semidefinite).

• Least square loss: ‖y −Ax‖22 is always convex (since ATA is always positive semidefinite)

‖y −Ax‖22 = xTATAx− 2yTAx+ yT y

where yT y is constant, and ATA is always positive semidefinite. So it always satisfies the convexity
condition for quadratic function.

• Norm:‖x‖ is convex for any norm; e.g., lp norms.

‖x‖p =

(
n∑

i=1

xpi

)1/p

for p ≥ 1, ‖x‖∞ = max
i=1,...,n

|xi|

and also operator (spectral) norm and trace (nuclear) norm:

‖X‖op = σ1(X), ‖X‖tr =

r∑
i=1

σr(X)

where σ1(X) ≥ · · · ≥ σr(X) ≥ 0 are the sigular values of the matrix X.

Note that l0 = #(i|xi 6= 0) norm is not really a norm, is just what we call it.

• Indicator function: if C is convex, then its indicator funtion IC is convex, where

IC =

{
0 x ∈ C
∞ x /∈ C

• Supporting function: for any set C (convex or not), its support function

I∗C(x) = max
y∈C

xT y

is convex. There is a reason for the notation which we will talk about when we discuss duality.

• Max function: f(x) = max{x1, . . . , xn} is convex.

2.5.3 Key properties of convex functions

• A function is convex if and only if its restriction to any line is convex. For f : Rn → R, we observe
how f behaves over a line in Rn, that is convex for any line if and only if f is convex.

• Epigraph characterization: An epigraph of a function f : Rn → R is the set of points lying on or
above its graph:
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Figure 2.9: Epigraph of f . From wikipedia.

A function f is convex if and only if its epigraph

epi(f) = {(x, t) ∈ dom(f)× R : f(x) ≤ t}

is a convex set. This property connects functions and sets in terms of convexity. With this property,
we can derive everything about convex functions from sets, including KKT conditions etc.

• Convex Sublevel sets: if f is convex, then its sublevel sets

{x ∈ dom(f) : f(x) ≤ t

are convex, for all t ∈ R. The converse is not true.A function with convex sublevel sets is called a
quasiconvex function.

• First-order characterization: if f is differentiable, then f is convex if and only if dom(f) is convex,
and

f(y) ≥ f(x) +∇f(x)T (y − x)

for all x, y ∈ dom(f). Therefore for a differentiable convex function ∇f(x) = 0⇐⇒ x minimizes f In
words, the tangent to the function at x, is an under approximator for the function, i.e., the function
lies above its tangent line. The above equation is also called first-order Taylor expansion.

Figure 2.10: If f is differentiable, then f is convex i.f.f. dom(f) is convex, and f(y) ≥ f(x) +∇f(x)T (y−x)
for all x, y ∈ dom(f)

• Second-order characterization: if f is twice differentiable, then f is convex if and only if dom(f)
is convex, and ∇2f(x) � 0 for all x ∈ dom(f)
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• Jensen’s inequality: if f is convex, and X is a random variable supported on dom(f), then f(E[X]) ≤
E[f(x)]

Note: We will use the first-order characterization and second-order characterization a lot.

2.5.4 Operations perserving convexity

Following are some operations perserving convexity.

• Nonnegative linear combination: f1, . . . , fm convex implies a1f1 + · · · + amfm convex for any
a1, . . . , am ≥ 0.

• Pointwise maximization: if fs is convex for any s ∈ S, then f(x) = maxs∈Sfs(x) is convex. Note
that the set S here (number of functions fs) can be infinite.

Figure 2.11: The point-wise maximum of convex functions is convex.

• Partial minimization: if g(x, y) is convex in x, y, and C is convex, then f(x) = miny∈Cg(x, y)isconvex.

Examples: Distance to a set Let C be an artibrary set, and consider the maximum distance to C under an
arbitrary norm ‖ · ‖:

f(x) = maxy∈C‖x− y‖

Let’s check this is convex: fy(x) = ‖x− y‖ is convex for any fixed y, so by point wise maximization rule, f
is convex.

Now let C be convex, and consider the minimum distance of C:

f(x) = miny∈C‖x− y‖

Let’s check this is convex: g(x, y) = ‖x − y‖ is convex in x, y jointly, and C is assumed convex, so apply
partial minimization rule.

More operations preserving convexity.

• Affine composition: f convex implies g(x)=f(Ax+b) convex This is really useful when you want
to prove some function convex, and you realize there is a affine transformation in there. Because
affine transformation mess up sometimes things like taking gradients or Hessians, making it more
complicated. Just do not bother with that, just do it for the case there is no affine transformation,
and claim when affine transformation is in there, we will still have convexity.

• General composition: suppose f = h · g, i.e., f(x) = h(g(x)), where g : Rn → R, h : R→ R. Then:
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– f in convex if h is convex and nondecreasing, g is convex

– f in convex if h is convex and nonincreasing, g is concave

– f in concave if h is concave and nondecreasing, g is concave

– f in concave if h is concave and nonincreasing, g is convex

How to remember these? You can think of the chain rule when n = 1:

f ′′(x) = h′′(g(x))g′(x)2 + h′(g(x))g′′(x)

• Vector composition: suppose that

f(x) = h(g(x)) = h(g1(x), . . . , gk(x))

, where g : Rn → Rk, h : Rk → R, f : Rn → R. Then:

– f is convex if h is convex and nondecreasing in each argument, g is convex

– f is convex if h is convex and nonincreasing in each argument, g is concave

– f is concave if h is concave and nondecreasing in each argument, g is concave

– f is concave if h is concave and nonincreasing in each argument, g is convex

Example: log-sum-exp function Log-sum-exp function: g(x) = log(
∑k

i=1 e
aT
i x+bi), for fixed ai,bi,i =

1, . . . , k. Ofen called ”soft max”, as it smoothly approximates maxi=1,...,k(aTi x+ bi).

How to show convexity? First, note it suffices to prove convexity of f(x) = log(
∑n

i=1 e
xi)(affine composition

rule)

Now use second-order characterization. Calculate

∇if(x) =
exi∑n
l=1 e

xl

∇2
ijf(x) =

exi∑n
l=1 e

xl
1{i = j} − exiexj

(
∑n

l=1 e
xl)2

Write ∇2f(x) = diag(z) − zzT , where zi = exi/(
∑n

l=1 e
xl). This matrix is diagonally dominant, hence

positive semidefinite.

2.6 References and further reading
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• R. T. Rockafellar (1970), “Convex analysis”, Chapters 1-10


