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4.1 Introduction

Optimization is a huge class of problems. There is a hierarchy of convex optimization problems. We’ll
talk about linear programming, quadratic programming, second-order cone programming, and semidefinite
programming today. See below.

4-1



4-2 Lecture 4: January 26

4.2 Linear Program

A linear program is a problem of the form:

min
x

cTx

subject to Dx ≤ d
Ax = b

The simplest type of convex optimization problem. Recall that a convex optimization problem is a problem
of the form:

min
x

f(x)

subject to g(x) ≤ d
Ax = b

where f and g’s are convex functions. In LP, objective and all inequality constraints are linear, and linear
functions are convex. Aside: Linear programming has an interesting history. Attributed to Dantzig in in
1940s, and has a vast range of applications, especially in game theory.

Examples: Diet problem Find the cheapest combination of foods that satisfies some nutritional requirements.

min
x

cTx

subject to Dx ≤ d
x ≥ 0

Here, cj is per-unit cost of food j, di is minimum required intake of nutrient i, Dij is content of nutrient i
per unit of food j, and xj is the units of food j in the diet.

Another example: Transportation problem (see slides)

Another example: L1 minmization is a heuristic to find a sparse solution to an under-determined system of
equations,

min
x

||x||1

subject to Ax = b

Where A is a fat matrix (m¡n), having fewer constraints than variables. Solving the combinatorial problem
is NP-hard, but the LP problem recovers a sparse solution with high probability.

Another example: Dantzig selector Tweaks the L1 minimization problem, where assuming that b is not just
Ax, but is Ax+ ε, and allows some error in the solution.

Any linear programming problem can be written in standard form.

min
x

cTx

subject to Ax ≤ b
x ≥ 0
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For example, if we have

min
x

cTx

subject to Dx ≥ d

we can add slack variables and write as

min
x

cTx

subject to Dx− s = d

s ≥ 0

Can replace x = y − s Optimality conditions: We have that -c is in the normal cone at an optimal solution
x*, which equivalent to stating that c = AT y ∗ +s∗. Easier to characterize the optimality conditions when
the problem is in standard form.

4.3 Quadratic Program

4.3.1 Convex quadratic programming

This is an optimization problem of the form

min
x

cTx+ 1/2xTQx

subject to Dx ≤ d
Ax = b

where Q is symmetric and positive semidefinite. The problem is convex iff the matrix Q is positive semidef-
inite.

Examples: portfolio optimization Model to construct financial portfolio with optimal performance/risk trade-
off:

max
x

µTx− γ/2xTQx

subject to 1Tx = 1

x ≥ 0

Here, µ is the expected assets’ returns, Q is the covariance matrix of assets’ returns, γ is risk aversion, and
x is the portfolio holding (percentages).

Another example: support vector machines The objective is quadratic
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Why is it a quadratic minimization problem when the Cis don’t appear square? The Q matrix can have
many zero entries.

4.3.2 Standard form

A quadratic program is in standard form if it is written as:

min
x

cTx+
1

2
xTQx

subject to Ax = b

x ≥ 0

x̄ is an optimal solution ⇔ −c−Qx̄ ∈ NC(x̄) ⇔ Qx̄+ c = AT ȳ+ s̄ for some ȳ and s̄ ≥ 0 such that s̄T x̄ = 0.
We see that for linear and quadratic convex programs, all we need to formalize the optimal solution are first
order conditions. Comparing with the optimality condition for linear programs, we see that if we have a
solver for linear programs, we might be able to tweak it a bit to solve convex quadratic programs.

4.4 Semi-definite programming

Semi-definite programs are a much bigger subset of convex optimization problems than convex quadratic
programs. We can extend from linear programs to semi-definite programs by changing the order (≤) involved
in the inequality constraint Dx ≤ d to a different kind of order in some vector space. We work with the
vector-space Sn now.

4.4.1 Notation and Definitions

• Sn is the vector space of symmetric n× n real matrices.

• Inside this vector space resides the cone of positive semi-definite matrices:

Sn+ := {X ∈ Sn : uTXu ≥ 0 ∀ u ∈ Rn}

• We will be using a couple of facts from linear algebra:

– The eigenvalues of a symmetric matrix are always real.

– The eigenvalues of a positive semi-definite matrix are always non-negative.

• The canonical inner product in Sn is:

〈X,Y 〉 = X • Y := trace(XY ) =
∑n

i=1

∑n
j=1XijYij

Trace satisfies the property that if the product ABC is well-defined and the result is a square matrix,
then tr(ABC) = tr(BCA).

• Sn+ is a closed convex cone.

• The interior of Sn+ is the cone of positive definite matrices defined as:

Sn++ := {X ∈ Sn : uTXu > 0 ∀ u ∈ Rn \ {0}}
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• X ∈ Sn++ ⇔ λ(X) ∈ Rn
++, where λ(X) is the map defining the eigenvalues of X.

• Loewner ordering: Given X,Y ∈ Sn,

X < Y ⇔ X − Y ∈ Sn+

4.4.2 The Optimization Problem

A semi-definite program (SDP) is of the form:

min
x

cTx

subject to Σn
j=1Fjxj 4 F0

Ax = b

Here, Fj ∈ Sd, j = 0, 1, ..., n and A ∈ Rm×n, c ∈ Rn, b ∈ Rm.

In the LP formulation, we had constraints Dx ≤ d, i.e., Σn
j=1djxj ≤ d, where dj ’s are the columns of

D. This is a system of linear inequalities. For the SDP, we have replaced dj with Fj , d with F0, and the
order ≤ with 4. By analogy, this is called a system of Linear Matrix Inequalities.

A semidefinite program is a convex optimization problem.

4.4.3 Standard form

min
X

C •X

subject to Ai •X = bi, i = 1, ...,m

X < 0

where A1, ..., Am and C are given symmetric n× n matrices, and X ∈ Sn is the matrix variable.

Every linear program is an SDP. We see this using the following:

• x ∈ Rn
+ ⇔ Diag(x) < 0

• cTx = Diag(c) •Diag(x)

• The objective as well as constraints can be written in matrix form. The constraints for off-diagonal
elements being 0 can be enforced by equalities.

4.4.4 History of semidefinite programming

• Eigenvalue optimization, LMI problems (1960s - 1970s) linear matrix inequality in control

• Lovasz theta function (1979) in information theory [lovasz]

• Interior-point algorithm for SDP (1980s, 1990s)

• Advancements in theory, algorithms, application (1990s)

• New algorithm and applications in data and imaging science (2000s-)
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4.5 Application of semidefinite programming

4.5.1 theta function

Assume G = (N,E), N is the node and E is the edge.

ω(G) is the clique number of G. The largest set of nodes that are completely connected.

χ(G) is the chromatic number of G. The minimum number of colors that suffice to color the nodes of the
graph.

The theta function:

θ(G) := max
X

11T •X

subject to I •X = 1

Xij = 0, (i, j) 6∈ E
X < 0

Lovasz sandwich theorem: ω(G) ≤ θ(G) ≤ χ(G)

4.5.2 Nuclear norm minimization

Similar to l1-norm for vectors.

min
X
‖X‖tr

subject to A(X) = b

Here A : Rmxn −→ p linear map, b ∈ Rp. Nuclear norm is ‖X‖tr = ‖σ(X)‖1, the sum of the singular values
of X. The dual of the nuclear norm is operator norm: ‖X‖op = ‖σ(X)‖∞ = max ‖Xu‖2 : ‖u‖2 ≤ 1 (Note:
the duality is like the p and q norm for vector.)

Example: Netflix challenge. We would want to find a matrix that is low rank.

Key for proof that this is a semidefinite programming.

Observation For y ∈ Rmxn

‖y‖op ≤ 1⇐⇒ yyT 4 Im

⇐⇒
[
Im y
yT In

]
< 0(special case of Schur Complement)
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‖x‖tr = max
y
{trace(xT y) : ‖y‖op ≤ 1}

= max
y

trace(xT y)

subject to

[
Im y
yT In

]
< 0

= min
w1,w2

1

2
(Imw1 + Inw2)

subject to

[
w1 x
xT w2

]
< 0

by SDP duality

The problem becomes a SDP.

min
X,w1,w2

1

2
(Imw1 + Inw2)

subject to A(X) = b[
w1 X
XT w2

]
< 0

*Schur Complement theorem: For a matrix

[
A B
BT C

]
and A, C are symmetric, C < 0

[
A B
BT C

]
< 0⇐⇒ A−BC−1BT < 0

4.6 Conic programming

LP and SDP are special cases of conic programming.

Conic program

min
x

cTx

subject to d−Dx ∈ K
Ax = b

where K is a closed convex cone.

4.6.1 second-order conic programming (SOCP)

min
x

cTx

subject to d−Dx ∈ Q
Ax = b

where Q = Qn1
× ...×Qnr

. and Qn is defined as Qn := {x =

[
x0
x

]
∈ Rn : x0 ≤ ‖x‖}
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Standard form:

min
x

cTx

subject to x <Q 0

Ax = b

for Q = Qn1
× ...×Qnr

.

LP ( SOCP ( SDP.

4.6.1.1 Convex QCQP

For a convex inequality xTQx+ qTx+ l ≤ 0, where Q = LLT ∈ Sn, q ∈ Rn, and l ∈ R. It can be recast as∥∥∥∥[ LTx
1+qT x+l

2

]∥∥∥∥ ≤ 1− qTx− l
2

.

That is, ∥∥∥∥[Ax+ b
cTx+ d

]∥∥∥∥ ≤ eTx+ f

⇐⇒
[
eTx+ fAx+ b

cTx+ d

]
∈ Q

Therefore, it can be rewrite to a SOCP if Qi < 0, i = 1, ..., r

min xTQ0x+ qT0 x

subject to xTQix+ qTi x, i = 1, ..., r

since all the inequality can be transformed to a second order cone constraint.

4.6.1.2 Rewrite a second order cone in terms of SDP

We can rewrite ‖x‖2 ≤ x0. By Shur Complement theorem,

[
I x
xT 1

]
< 0⇐⇒ ‖x‖2 ≤ 1

So,

‖x‖2 ≤ x0 ⇐⇒
[
x0I x
xT x0

]
< 0

Any second order cone constraints can be rewrite to a SD constraint.
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