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7.1 Last Time

Last class, we learnt about gradient descent. Given an unconstrained convex optimization problem: min f(x)
where f is convex and differentiable, dom(f) = Rn, the gradient descent algorithm started by choosing an
initial point x(0) ∈ Rn and then took successive steps to move along the direction of the negative gradient
until convergence:

x(k) = x(k−1) − tk∇f(x(k−1)), k = 1, 2, 3, . . .

We also learnt about “backtracking” which is a popular approach for selecting the step size. If ∇f is
Lipschitz, we also saw that the gradient descent algorithm had a convergence rate O( 1

ε ). While really simple
and intuitive, the gradient descent algorithm requires the objective f to be differentiable. This limits the
applicability of gradient descent. In this class we will study about subgradients, which is a generalization of
gradients and can be used when the objective is non-differentiable.

7.2 Subgradients

Subgradients are counterpart of gradients for non-differentiable functions. They are closely related to the
concept of convexity. Recall that a differentiable function f is said to be convex iff:

f(y) ≥ f(x) +∇f(x)T (y − x) ∀x, y ∈ Rn

In other words, a linear approximation always underestimates f . Subgradients are defined in a similar
manner.

Definition 7.1 A subgradient of a convex function f at a point x is any g ∈ Rn such that:

f(y) ≥ f(x) + gT (y − x) ∀y

While gradients may not exist/be undefined for non-differentiable function, subgradients always exist. If
the function f is differentiable at the point x, then the subgradient g is unique and g = ∇f(x). This
definition works for non-convex functions also. However, subgradients sometimes may not exist for non-
convex functions.
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7.2.1 Examples of Subgradients:

Example 1: f(x) = |x|. Wherever f is differentiable (i.e. x 6= 0), the subgradient is identical to the
gradient, sign(x). At the point x = 0, anything in the range [1, 1] is a valid subgradient as any line passing
through x = 0 with a slope in this range will lower bound the function.

Example 2: f(x) = ||x||2. For x 6= 0, f is differentiable and the subgradient (also the gradient) is given
by g = x

||x||2 . For x = 0, the subgradient is any vector whose 2 norm is at most 1. This holds because, by

definition, in order for g to be a subgradient of f we must have f(y) = ||y||2 ≥ f(x) + gT (y − x) = gT y ∀y.
In order for ||y||2 ≥ gT y to hold, the only condition for g is ||g||2 ≤ 1.

Example 3: f(x) = ||x||1, x ∈ Rn. Since ||x||1 =
∑n
i=1 |xi|, we can consider each element gi of the

subgradient separately. The result is analogous to example 1. For xi = 0, gi = sign(xi). For xi = 0, gi is
any point in [1, 1].

Example 4: f(x) = max{f1(x), f2(x)}, where f1 and f2 are arbitrary convex and differentiable functions.
Here, we consider three cases. First, if f1(x) > f2(x), then f(x) = f1(x) and therefore the subgradient is
g = ∇f1(x). Similarly, if f2(x) > f1(x), then f(x) = f2(x) and g = ∇f2(x). Finally, if f1(x) = f2(x), then
f may not be differentiable at x and anything on the line segment that joints ∇f1(x) and ∇f2(x) is a valid
subgradient.

7.3 Subdifferential

Definition 7.2 The subdifferential of a convex function f : Rn → R at some point x is the set of all
subgradients of f at x:

∂f(x) = {g : g is a subgradient of f at x}

The subdifferential forms a closed and convex set. This holds even for non-convex functions. To verify this,
suppose we have two subgradients g1, g2 ∈ ∂f(x). We need to show that g = αg1 + (1−α)g2 is also in ∂f(x)
for arbitrary α ∈ [0, 1]. Using the definition of subgradients, we can write the following inequalities:

f(y) ≥ f(x) + gT1 (y − x) ∀y

f(y) ≥ f(x) + gT2 (y − x) ∀y

Now, multiplying the first with α and the second with 1− α and adding them up leads to the result:

f(y) ≥ f(x) + αgT1 (y − x) + (1− α)gT2 (y − x) = f(x) + gT (y − x)

7.4 Connection to convex geometry

Consider the indicator function IC : Rn → R, defined on a convex set C:

IC(x) = I(x ∈ C) =

{
0 if x ∈ C
∞ if x /∈ C

For x ∈ C, ∂IC(x) = NC(x), the normal cone of C at x. Recall that the normal cone of C at x is defined as:

NC(x) = {g ∈ Rn : gTx ≥ gT y for any y ∈ C}
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This directly follows from the definition of subgradient:

IC(y) ≥ IC(x) + gT (y − x) ∀y

For y /∈ C, IC(y) = ∞. For y ∈ C, IC(y) = 0. This means 0 ≥ gT (y − x) which is the definition of the
normal cone.

The subgradients of indicator functions are important as any constrained coptimization problem min
x∈C

f(x)

can be rewritten as min
x

f(x) + IC(x).

7.4.1 Subgradient Calculus

Subgradients for complex convex functions can be computed by knowing the subgradients for a basic set of
convex functions and then applying rules of subgradient calculus. Here are the set of rules:

Scaling: ∂(αf) = α∂f

Addition: ∂(f1 + f2) = ∂f1 + ∂f2

Affine composition: If g(x) = f(Ax) + b then ∂g(x) = AT∂f(Ax+ b).

Finite pointwise maximum: If f(x) = max
i=1,...,m

fi(x) then ∂f(x) = conv
(⋃

i:fi(x)=f(x)
∂fi(x)

)
Generalized pointwise maximum: If f(x) = max

x∈S
fs(x) then ∂f(x) ⊇ cl

(
conv

(⋃
s:fs(x)=f(x)

∂fs(x)
))

Lp Norm: f(x) = ||x||p. Let q be such that 1
p + 1

q = 1, then, ||x||p = max||z||q≤1 z
Tx. By duality theory,

this leads to ∂f(x) = arg max
||z||q≤1

zTx = ||x||q

7.4.2 Why Subgradients?

Subgradients are important for two reasons. First, subgradients are useful for convex analysis - we can often
give the optimality characterization via subgradients, monotonicity, relationship to duality. Second, if one
can compute subgradients, then one can minimize (almost) any convex function.

7.4.2.1 Optimality condition

The optimality condition relates the minimizer of a function with the subgradient at the point. For any f
(convex or not),

f(x∗) = min
x
f(x) ⇐⇒ 0 ∈ ∂f(x)

In other words, if x∗ is a minimizer if and only if 0 is a subgradient of f at x. This is called the subgradient
optimality condition. This is because g = 0 being a subgradient means that for all y

f(y) ≥ f(x∗) + 0T (y − x) = f(x∗)

7.4.2.2 Derivation of first order optimality

Recall that for f convex and differentiable, the problem min
x∈C

f(x) is solved at x iff ∇f(x)T (y−x) ≥ 0 ∀y ∈ C.

In other words, the gradient increases as we move away from x. This can be seen by recasting the problem
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as minx f(x) + IC(x). Now, from the subgradient optimality condition 0 ∈ ∂(f(x) + IC(x)). Also:

0 ∈ ∂(f(x) + IC(x)) ⇐⇒ 0 ∈ {∇f(x)}+NC(x)

⇐⇒ −∇f(x) ∈ NC(x)

⇐⇒ −∇f(x)Tx ≥ −∇f(x)T y ∀y ∈ C
⇐⇒ ∇f(x)T (y − x) ≥ 0 ∀y ∈ C

Example 1 - Lasso optimality conditions: Consider the following lasso problem (y ∈ Rn, X ∈ Rn×p):

min
β∈Rp

1

2
||y −Xβ||22 + λ||β||1

where, λ ≥ 0. The subgradient optimality condition is:

0 ∈ ∂
(

1

2
||y −Xβ||22 + λ||β||1

)
⇐⇒ 0 ∈ −XT (y −Xβ) + λ∂||β||1

⇐⇒ XT (y −Xβ) = λv

for some v ∈ ∂||β||1. From Example 1 in Section 7.2.1,

vi =


1 if βi > 0

−1 if βi < 0

[−1, 1] if βi = 0

Let X1, . . . , Xp be the columns of X. Then, the subgradient optimality condition is:{
XT
i (y −Xβ) = λ sign(βi) if βi 6= 0

|XT
i (y −Xβ)| ≤ λ if βi = 0

Note that this is not an expression for a lasso solution. However, it does provide a way to check lasso
optimality and to understand the lasso estimator: |XT

i (y −Xβ)| < λ, then, βi = 0.

Example 2 - Soft Thresholding: Consider the simplfied lasso problem with X = I:

min
β∈Rn

1

2
||y − β||22 + λ||β||1

We can solve this problem directly using subgradient optimality. The solution is β = Sλ(y), where Sλ is the
soft-thresholding operator:

[Sλ(y)]i =


yi − λ if yi > λ

0 if − λ ≤ yi ≤ λ
yi + λ if yi < −λ

Similar to the previous example, the subgradient optimality conditions are:{
yi − βi = λ sign(βi) if βi 6= 0

|yi − βi| ≤ λ if βi = 0

We can now plug in β = Sλ(y) and check that these are satisfied:

• When yi > λ, βi = yi − λ > 0, so yi − βi = λ = λ1
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• When yi < λ, the argument is similar

• When |yi| ≤ λ, βi = 0, and |yi − βi| = |yi| ≤ λ

Example 3 - Distance to a Convex set: Now, we consider the distance function to a convex set C:

dist(x,C) = min
y∈C
||y − x||2

It is easy to see that this is a convex function. Let us now derive its subgradients. We can rewrite dist(x,C) =
||x− PC(x)||2, where PC(x) is the projection of x onto C. Then when dist(x,C) > 0:

x− PC(x)

||x− PC(x)||2
= ∂dist(x,C)

Since there is only one element in the subgradient, this implies that dist(x,C) is indeed differentiable. We
will only show one direction, i.e:

x− PC(x)

||x− PC(x)||2
∈ ∂dist(x,C)

Let u = PC(x). Then, by first-order optimality conditions for a projection:

(u− x)T (y − u) ≥ 0 ∀y ∈ C

Hence,
C ⊆ H = {y : (u− x)T (y − u) ≥ 0}

Claim: for any y,

dist(y, C) ≥ (x− u)T (y − u)

||x− u||2
Note that for y ∈ H, the right-hand side is ≤ 0. For y /∈ H, we have (x−u)T (y−u) = ||x−u||2||y−u||2cos(θ)
where θ is the angle between x− u and y − u. Thus:

(x− u)T (y − u)

||x− u||2
= ||y − u||2cos(θ) = dist(y,H) ≤ dist(y, C)

as desired.

Using the claim, we have for any y,

dist(y, C) ≥ (x− u)T (y − x+ x− u)

||x− u||2

= ||x− u||2 +

(
x− u
||x− u||2

)T
(y − x)

Hence g = x−u
||x−u||2 is a subgradient of dist(x,C) at x.


