
10-725/36-725: Convex Optimization Spring 2015

Lecture 9: Numerical Linear Algebra Primer (February 11st)
Lecturer: Ryan Tibshirani Scribes: Avinash Siravuru, Guofan Wu, Maosheng Liu

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

In the past few lectures, we have reviewed various first order methods used for minimizing convex optimization
problems. Although first order methods only need computation of the gradient at each step, second-order
methods would require solving linear equations that will be covered later. Several efficient non-iterative
matrix algorithms exist for this purpose. We will look at some of them in this lecture and estimate their
computational complexity.

9.1 Complexity of basic operations

Complexity can be expressed in terms of floating point operations or flops required to find the solution,
expressed as a function of the problem dimension. A Flop serves as a basic unit of computation. It could
denote an addition, subtraction, multiplication or division of two floating point numbers. In practise, division
is more expensive to compute. However, we approximate it to one flop to simplify overall calculation. In
this way, the number of flops indicates the cost of performing a sequence of operations. Note that, the flop
count is just a rough measure of how expensive an algorithm can be. Many more aspects need to be taken
into account to accurately estimate practical runtime. It is still a quite useful in predicting algorithmic cost.

As an illustration, flop counts of some basic linear algebra operations are given below:

9.1.1 Vector-vector operations

Given vectors a, b ∈ Rn, it can be seen that:

• a+ b - Vector addition requires n flops for n elementwise additions.

• c · a (c ∈ R) - Scalar multiplication also requires n flops for as many elementwise multiplications.

• aT b - Inner Product requires approximately 2n flops for n multiplications and n− 1 additions, respec-
tively.

As stressed earlier, flops don’t give the complete picture always. For example, it takes zero flops to assign
an arbitrary n-dimensional vector to variable a as defined above.

9.1.2 Matrix-vector operations

Given a matrix A ∈ Rm×n and a vector b ∈ Rn, let’s examine the cost of computing the product Ab:

9-1

9-2 Lecture 9: Numerical Linear Algebra Primer (February 11st)

• In general, it costs 2mn flops. 2n flops are required to compute the inner product between each row
of A and b. m such computations yield the resultant vector Ab.

• For s-sparse A, it takes 2s flops. Note that, this can be obtained by replacing mn in the general case
with s. For a general matrix, mn denotes the number of non-zero elements, which is equal to s, in the
sparse case. Alternatively, recollect that flops only count multiplications and divisions. Therefore, if
all the non-zero elements in A could be collected and stored more efficiently, we only need to multiply
them with their corresponding elements from b and add them up accordingly. This will be s flops each
for addition and multiplication.

• For k-banded case (assuming A ∈ Rn×n), it costs 2kn. k-banded matrices are a special case of sparse
matrices with a defined structure. Each row contains atmost k non-zero elements with the diagonal
element necessarily at the centre (except at corners). It can be seen that since there are only k elements
in each row, 2k flops suffice to compute ATi b, where Ai is the ith row of A. Performing this operation
across n rows costs 2kn flops.

• For A =
∑r
i=1 uiv

T
i ∈ Rm×n, it requires 2r(m + n) flops. Observe that, U ∈ Rm×r, V ∈ Rn×r and

UV T b can be resolved into two matrix-vector operations p = V T b and Up, each requiring 2nr and 2mr
flops, respectively.

• For A ∈ Rn×n, a permutation matirx, it takes 0 flops to reorder elements in b.

9.1.3 Matrix-matrix operations

Choose A ∈ Rm×n and B ∈ Rn×p and cosider the computation of AB:

• In general, it takes 2mnp flops. Evidently, this comes from performing matrix-vector product on every
column of B.

• For an s-sparse A, it costs 2sp flops. The cost can be further reduced if B is also sparse.

In summary, matrix computations are very cheap for sparse and banded matrices. They are free when
permutation matrices are used.

9.1.4 Matrix-matrix-vector operations

The cost of computing a matrix-matrix-vector operation can vary significantly depending on the order in
which the operands are multiplied. For A ∈ Rm×n, B ∈ Rn×p and c ∈ Rn, the cost of computing ABc can
cost as high as 2mnp+2mp flops, when multiplied as (AB)c, and as low as 2np+2mn flops, when multiplied
as A(Bc)

In the next section, we will apply the concept of flops to estimate the cost of solving linear equations.

9.2 Solving linear systems using Gaussian elimination

Here we consider a non-singular square matrix A ∈ Rn×n and a vector b ∈ Rn. Our objective is to solve the
linear equation, Ax = b. In others words, we intend to determine the cost of computing x = A−1b.

Lecture 9: Numerical Linear Algebra Primer (February 11st) 9-3

• In general, it costs n3 flops. Note that, the flop counts grow with the increase in the operation
complexity. We have seen that vector-vector computations takes n flops, matrix-vector takes n2 flops
(for a square matrix) and solving linear systems costs n3. The complexities are very different and this
is pronounced when n is large. However, the complexity of solving linear systems can be reduced for
some matrices having special properties.

• For a diagonal matrix, it just costs n flops, one each for element-wise divisions. x = (b1/a1, . . . , bn/an)

• For lower tringular matrices, which have non-zero elements only on the diagonal and below it (i.e.,
Aij = 0 ∀ j > i), we use forward substitution, as shown in (9.1), to compute the inverse more efficiently.
It can be easily verified that this recursion costs n2 flops.

xi = A−1ii (bi −
i−1∑
j=1

Aijxi) ∀i ∈ n (9.1)

• For upper triangular matrices, we apply a similar procedure called backward substitution and it also
costs n2 flops.

• For an s-sparse A, it often costs � n3. However, it is hard to determine the exact order of flops. It
heavily depends on the sparsity structure of the matrix. In the worst-case, it could even be of the order
of n3.

• For the k-banded A, having a structured sparsity, we can get a more accurate measure of the worst
case flop count. It costs nk2 flops. k is generally very small and therefore they can be solved in linear
time.

• For an orthogonal matrix A, we know that A−1 = AT , and x = AT b. This reduces to a simple
matrix-vector operation costing 2n2 flops.

• For a permutation matrix A, again A−1 = AT , and x = AT b costs 0 flops. Each row of A has only one
element and x can be obtained from n assignment operations that are free of cost!

In the next section, we see how factorizing a matrix before solving the system of linear equations, helps in
reducing cost. Some well-known factorization techniques are introduced and their relative complexities are
compared.

9.3 Numerical matrix decomposition

Although Gaussian elimination is universal for solving a linear equation, it is not efficient enough for cases
when the coefficient matrix A possesses special structure such as sparsity. Here we are going to introduce an-
other two very useful alternatives, the Cholesky decomposition and QR decomposition. A detailed discussion
on their properties could be found in Chapter 4 and 5 in [GL96].

9.3.1 Cholesky decomposition

When the matrix A is symmetric and positive definite, i.e A ∈ Sn++, there exists a unique lower triangular
matrix L such that A = LLT . Moreover, the matrix L is non-singular. Since Cholesky decomposition is a
special case of Gaussian elimination for the positive definite matrices, its computation requires n3/3 flops.
To solve a linear equation Ax = b using Cholesky decomposition, the flop number is given by:

9-4 Lecture 9: Numerical Linear Algebra Primer (February 11st)

• Get Cholesky decomposition A = LLT , n3/3 flops.

• Compute y = L−1b by forward substitution, n2 flops.

• Compute x = (LT)−1y by backward substitution, n2 flops.

So in general, to solve a n dimensional linear equation by a given Cholesky decomposition only needs 2n2

flops.

9.3.2 QR decomposition

QR decomposition works for a more general case even when the matrix under consideration is not square.
The construction of QR decomposition depends on a so-called Householder transformation[GL96]. By sub-
sequently applying this Householder transformation, we are able to decompose a matrix A ∈ Rm×n into the
form as

A = QR

where m ≥ n, Q ∈ Rm×n, QTQ = In, R ∈ Rn×n is upper triangular.

And this transformation is called QR decomposition. Note that there’s some interesting properties about
the factor matrix Q and R:

• The column vectors of Q = [Q1, Q2, · · · , Qn] actually forms the orthonormal basis of a n dimensional
subspace of Rm. So it can be treated as orthogonal in a general sense.

• Moreover, if we expand the columns of Q to the whole space as [Q1, Q2, · · · , Qm], then it holds that
the column span of Q̃ = [Qr+1, · · · , Qm] actually forms an orthogonal complementary of col(Q). Then
by the fact that orthogonal matrix preserves vector’s norm, we have

xTx = xT
[
Q Q̃

] [QT
Q̃T

]
x = xT (QQT + Q̃Q̃T)x = ||QTx||22 + ||Q̃Tx||2 (9.2)

which can simply the optimization problem in many cases.

• The diagonal elements of R are relevant to the rank of A. If rank(A) ≥ r, then the first r diagonal
entries of R are nonzero and span(Q1, · · · , Qr) = col(A) where r ≤ n.

To compute the QR decomposition of a n × p matrix A, it requires about 2(n − p/3) · p2 flops. When A is
square, the number of flops 4n3/3 which is more expensive than Cholesky decomposition.

9.3.3 Computational cost of Cholesky and QR on least square

Here we perform an analysis on the computational cost of both sides. The case studied here is least square
problem shown below as:

min
β∈Rp

||y −Xβ||22 ⇒ β = (XTX)−1(XT y)

where X ∈ Rn×p, y ∈ Rn.

To solve this linear equation given by the analytical solution, necessary flop numbers are shown in Table 9.1.
This shows that Cholesky decomposition is computationally cheaper than QR decomposition.

Lecture 9: Numerical Linear Algebra Primer (February 11st) 9-5

Cholesky decomposition QR decomposition

Step Flop Number Step Flop Number

Compute z = XT y 2pn Compute X = QR 2(n− p/3)p2

Compute A = XTX p2n Reduce to minimizing
||QT y −Rβ||22 by (9.2)

0

Compute A = LLT p3/3 Compute z = QT y 2pn

Solve Ax = z 2p2 Solve Rβ = z forward subs p2

Total Number ' (n+ p/3)p2 Total Number ' 2(n− p/3)p2

Table 9.1: Computational cost between Cholesky and QR decomposition

9.4 Linear systems and sensitivity

From the previous section, it seems that Cholesky decomposition is “always” better than QR decomposition
computationally. However, as we take the numerical robustness, the performance of QR will win over by
sensitivity analysis. To start with, consider the linear system Ax = b, with nonsingular A ∈ Rn×n. The
singular value decomposition of A is A = UΣV T , where U, V ∈ Rn×n are orthogonal, and Σ ∈ Rn×n is
diagonal with elements σ1 ≥ ... ≥ σn > 0.

A could be near a singular matrix B even if it’s full rank, i.e.,

dist(A,<k) = min
rank(B)=k

‖A−B‖op

could be small for some k < n. We can show with SVD analysis that dist(A,<k) = σk+1. If the value is
small, solving x = A−1b could be problematic.

Applying SVD we can see that:

x = A−1b = V Σ−1UT b =

n∑
i=1

viu
T
i b

σi

If σi > 0 is small, close to set of rank i− 1 matrices, that would pose some problem.

In precise sensitivity analysis: fix some F ∈ Rn×n, f ∈ Rn, solve:

(A+ εF)x(ε) = (b+ εf)

Theorem 9.1 The solution to the perturbed system satisfies:

‖x(ε)−x‖22
‖x‖2 ≤ κ(A)(ρA + ρb) +O(ε2)

where κ(A) = σ1/σn is the condition number of A, and ρA = |ε|‖F‖op/‖A‖op, ρb = |ε|‖f‖2/‖b‖2 are the
relative errors.

Proof: Differentiating the equation above, let ε = 0, and solving for dx
dε . We have:

9-6 Lecture 9: Numerical Linear Algebra Primer (February 11st)

dx
dε (0) = A−1(f − Fx)

where x = x(0).

Apply Taylor expansion around 0,

x(ε) = x+ εA−1(f − Fx) +O(ε)2

Rearrange and we arrive at the inequality,

‖x(ε)−x‖22
‖x‖2 ≤ |ε|‖A−1‖op(‖f‖2‖x‖2 + ‖F‖op) +O(ε2)

Multiplying and dividing by ‖A‖op, and note that κ(A) = ‖A‖op‖A−1‖op, which proves the result.

9.5 Cholesky versus QR for least squares

In linear systems worse conditioning means great sensitivity.

For least squares problems: min
β∈Rp
‖y − Xβ‖22, Cholesky solves XTXβ = XT y, hence the sensitivity scales

with κ(XTX) = κ(X)2. While QR operates on X without forming XTX, that sensitivity scales with

κ(X) + ρLS · κ(X)2, where ρLS = ‖y −X β̂‖22.

In summary, Cholesky is cheaper and use less memory, while QR is more stable when ρLS is small and κ(X)
is large.

9.6 Some advanced topics

• Updating matrix factorizations: can often be done efficiently after a simple change. E.g., QR of
A ∈ Rm×n can be updated in O(m2) flops after adding or deleting a row, and O(mn) flops after adding
or deleting a column.

• Underdetermined least squares: if X ∈ (R)n×p and rank(X) < p, the criterion ‖y − Xβ‖22 has
infinitely many minimizers. One with smallest l2 norm can be computed using QR.

• Matrix factorizations: if X ∈ (S)n++ is k-banded, then we can compute its Choleksy decomposition
in nk2/4 flops, and apply it in 2nk flops.

• Sparse matrix factorizations: although it is lacking in theoretical analysis, in practice the perfor-
mance is extremely good. To find more details about the state-of-art, we refer to [TD06], [NV13] in
the references.

9.7 Alternative indirect methods

So far, we have have seen direct methods for solving system of linear equations, which give exact solutions.
However, they may be impractical for very large and sparse systems. In such cases we trade accuracy with
some speed-up. Recursive (indirect) methods, introduced in this section, are more useful in such situations.
These methods recursively produce x(k), k = 1, 2, 3, . . ., coverging to the solution x∗.

Lecture 9: Numerical Linear Algebra Primer (February 11st) 9-7

Jacobi iterations: It is the most basic approach. Let A ∈ Sn++, initialize x0 ∈ Rn, and repeat for k =
1, 2, 3, . . .

xk+1 = (bi −
∑
i6=j

Aijx
k
j)/Aii (9.3)

The matrix A is divided into two matrices, one containing only diagonal elements and the other
containing all the non-diagonal elements. A contraction map is constructed such that the optimal
solution is the fixed point of (9.3).

Gauss-Seidel iterations: It is an improvement to the above method and uses only the most recent iterates,
i.e.,

∑
j>iAijx

k+1
j +

∑
j<iAijx

k
j , instead of the sum in (9.3). Gauss-Seidel iterations converge always

while Jacobi iteration don’t.

Gradient Descent: Let f = xTAx− bTx. Now, repeat:

r(k) = b = Ax(k) (9.4)

x(k+1) = x(k) + texact.r
(k) (9.5)

Since A ∈ Sn++, the criterion f is strongly convex, therefore linear convergence. But this contraction

depends adversely on κ(A). This implies that the gradient direction r(k) are not diverse enough across
iterations.

Conjugate gradient: It is more improved algorithm which replaces the gradient directions above with
better selections that satisfy, p(k) ∈ span{Ap(1), . . . , Ap(k−1)}⊥. Note these directions are constructed
to be diverse. Conjugate gradient method still uses one A multiplication per iteration, and in principle,
it takes n iterations or much less. In practice, this is not true (numerical errors), and preconditioning
is used.

References

[TD06] T. Davis , “Direct methods for sparse linear systems”,

free C++ package at http://faculty.cse.tamu.edu/davis/suitesparse.html.

[GL96] G. Golub and C.V. Loan, “ Matrix Computation ”, Chapter 4-5, 10.

[NV13] N. Vishnoi, “ Lx = b, Laplacian solver and their applications. ”

[BV04] S. Boyd and L. Vandenberghe, “ Convex Optimization ”, Appendix C.

