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11.1 Background

As demonstrated last lecture, a linear program can be transformed into a dual problem by introducing a
dual variable for each constraint, as summarized below:

Given c ∈ Rn, A ∈ Rm×n, b ∈ Rm, G ∈ Rr×n, h ∈ Rr:

min
x∈Rn

cTx

s.t. Ax = b
Gx ≤ h

max
u∈Rm,v∈Rr

−bTu− hT v
s.t. −ATu−GT v = c

v ≥ 0

Primal LP Dual LP

In these notes, we will see that we can derive a very similar dual problem for a general optimization problem
using the Lagrangian. This allows us to define, for a general optimization problem (even a non-convex one),
a dual problem which is convex, and the solution to which provides a lower-bound on the solution to the
primal problem.

11.2 The Lagrangian

Consider the general constrained minimization problem

min f(x)
s.t. hi(x) ≤ 0, i = 1, ...m

lj(x) = 0, j = 1, ...r

Introduce new variables u ∈ Rm, and v ∈ Rr, with u ≥ 0, and define the Lagrangian to be

L(x, u, v) := f(x) +

m∑
i=1

uihi(x) +

r∑
j=1

vj lj(x)

(implicitly, L(x, u, v) = −∞ if u < 0)

Observe that for feasible x and u ≥ 0, lj(x) = 0 and uihi(x) ≤ 0; thus
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L(x, u, v) = f(x) +

m∑
i=1

uihi(x) +

r∑
j=1

vj lj(x) ≤ f(x)

This is illustrated in Figure 11.1 below.
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Figure 5.1 Lower bound from a dual feasible point. The solid curve shows the
objective function f0, and the dashed curve shows the constraint function f1.
The feasible set is the interval [−0.46, 0.46], which is indicated by the two
dotted vertical lines. The optimal point and value are x⋆ = −0.46, p⋆ = 1.54
(shown as a circle). The dotted curves show L(x,λ) for λ = 0.1, 0.2, . . . , 1.0.
Each of these has a minimum value smaller than p⋆, since on the feasible set
(and for λ ≥ 0) we have L(x,λ) ≤ f0(x).
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Figure 5.2 The dual function g for the problem in figure 5.1. Neither f0 nor
f1 is convex, but the dual function is concave. The horizontal dashed line
shows p⋆, the optimal value of the problem.

Figure 11.1: Lagrangian lower bound: solid line is f(x); dashed line is a non-convex inequality constraint
(h(x) ≤ 0); the feasible region is x ∈ [−0.46, 0.46], with an optimal value of x = −0.46. The dotted lines
show L(x, λ) for different values of the dual variable λ ≥ 0. Note that L(x, λ) ≤ f(x) for all feasible x.

Now define the Lagrange dual function to be:

g(u, v) := min
x

L(x, u, v)

and observe that we have:

f∗ ≥ min
x∈C

L(x, u, v) ≥ min
x

L(x, u, v) := g(u, v)

Thus, g(u, v) gives a lower bound on f∗ for any u ≥ 0 and v. This is illustrated in Figure 11.2 below:
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dotted vertical lines. The optimal point and value are x⋆ = −0.46, p⋆ = 1.54
(shown as a circle). The dotted curves show L(x,λ) for λ = 0.1, 0.2, . . . , 1.0.
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Figure 5.2 The dual function g for the problem in figure 5.1. Neither f0 nor
f1 is convex, but the dual function is concave. The horizontal dashed line
shows p⋆, the optimal value of the problem.Figure 11.2: Lagrangian dual function: This figure shows the Lagrangian dual function, g(λ), (solid line)

for the problem shown in Figure 11.1, as a function of the dual variable λ. The optimal value of the primal
objective function is shown by the dashed line. Note that neither the objective function nor the constraint

is convex in the original problem, but the Lagrangian dual function is nevertheless concave.

Now that we have a lower bound on f∗ in terms of the dual variables, u and v, we can obtain the best
possible bound by maximizing the Lagrangian dual function:

max
u,v

g(u, v)

s.t. u ≥ 0

Based on the above, we are guaranteed to have weak duality, namely

f∗ ≥ g∗

where g∗ is the optimal value of the dual maximization problem. Note that this holds even if the original
problem is not convex, (as in Figure 11.1 and 11.2).

In addition, the resulting dual problem will always be a convex optimization problem (again, even if the
original problem is not convex), as the dual objective can be written as a pointwise maximum of convex
functions in (u, v), which is guaranteed to be convex:

g(u, v) = −max
x

[−L(x, u, v)] = −max
x

−f(x)−
m∑
i=1

uihi(x)−
r∑
j=1

vj lj(x)



11.3 Example: Quadratic program

Consider the following quadratic program with Q � 0:

max
x∈Rn

1

2
xTQx+ cTx

s.t. Ax = b, x ≥ 0
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The Lagrange dual function is:

g(u, v) = min
x

L(x, u, v)

= min
x

1

2
xTQx+ cTx+ uT (−x) + vT (Ax− b)

Differentiating gives Qx + c − u + AT v = 0. Thus, x = Q+(−c + u − AT v), where Q+ is the generalized
inverse of Q. Substituting this into the Lagrange dual function gives:

g(u, v) = −1

2
(c− u+AT v)Q+(c− u+AT v)− bT v

Note, however, that if (c−u+AT v) is in the null space of Q (i.e. Q(c−u+AT v) = 0), then g(u, v) = −bT v,
which, since v is unconstrained, could take on arbitrary values. Thus, we effectively have an additional
constraint on the dual problem, and the Lagrangian dual function becomes:

g(u, v) =

{
−1

2
(c− u+AT v)Q+(c− u+AT v)− bT v if c− u+AT v ⊥ null(Q)

−∞ otherwise

If Q is positive-definite (Q � 0), then xTQx > 0 and we can drop this condition.

11.4 Strong Duality and Slater’s Condition

Recall that we always have weak duality (f∗ ≤ g∗).
However, when f∗ = g∗, we call it strong duality.

This is motivated by Slater’s condition:

If the primal problem is convex and there exists at least one x ∈ Rn that is strictly feasible (i.e., the convex
inequality constraints are strictly negative: hi(x) < 0, i = 1, . . . ,m), then strong duality holds.

For linear programs, the following hold:

1. The dual of the dual is the primal problem.

2. Strong duality holds if the primal problem is feasible.

3. Likewise, strong duality holds if the dual problem is feasible.

4. Thus, strong duality holds for linear programs, except when infeasible.

11.5 Example: Support Vector Machines

In this example, we derive the dual form of SVM. Note that the goal of SVM is to maximize the margin
width 1/β, and thus minimize β (and allowing for some errors, if the data is not linearly separable).
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Consider the SVM problem:

Given yi ∈ {−1, 1},X ∈ Rn×p (with rows x1, . . . , xn ∈ R1×p),

min
β,β0,ξ

1
2‖β‖22 + C

n∑
i=1

ξi

s.t. ξi ≥ 0, i = 1, . . . , n
yi(xiβ + β0) ≥ 1− ξi, i = 1, . . . , n

where ‖β‖22 minimizes the margin while C
n∑
i=1

ξi determines how many errors are allowed (i.e., how many

support vectors are allowed within the margin).

We rewrite the primal problem as:

min
β,β0,ξ

1
2‖β‖22 + C

n∑
i=1

ξi

s.t. −ξi ≤ 0, i = 1, . . . , n
1− ξi − yi(xiβ + β0) ≤ 0, i = 1, . . . , n

Now, we introduce dual variables v (where vi ≥ 0 corresponds to the −ξi ≤ 0 constraints) and w (where
wi ≥ 0 corresponds to the 1− ξi − yi(xiβ + β0) ≤ 0 constraints).

Recall to formulate the dual problem, we first compute the Lagrangian function, then minimize it with
respect to the primal variables. The Lagrangian L is:

L(β, β0, ξ, v, w) =
1

2
‖β‖22 + C

n∑
i=1

ξi +

n∑
i=1

vi(−ξi) +

n∑
i=1

wi(1− ξi − yi(xiβ + β0)

This can be reformulated as:

L(β, β0, ξ, v, w) =
1

2
‖β‖22 −

n∑
i=1

wiyixiβ −
n∑
i=1

wiyiβ0 +

n∑
i=1

(C − vi − wi)ξi +

n∑
i=1

wi

We can minimize the Lagrangian with respect to β, β0, and ξ separately. Also, for ease of notation, let
X̃ ∈ Rn×p, where the ith row is yixi.

Minimizing L w.r.t. β:
Note the only terms that L depends on β is

min
β

1

2
βTβ − wT X̃β
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Taking the gradient and setting it equal to zero yields the β minimizer:

β = wT X̃β

Minimizing L w.r.t. β0:

min
β0

−
n∑
i=1

wiyiβ0

Taking the gradient and setting it equal to zero yields a necessary constraint:

n∑
i=1

wiyi = 0

Finally, minimizing L w.r.t. ξ:

min
ξ

n∑
i=1

(C − vi − wi)ξi

Taking the gradient and setting it equal to zero yields another constraint:

C − vi − wi = 0, i = 1, . . . , n⇒ wi = C − vi, where vi ≥ 0

Note that since wi depends on vi, we can remove vi as a slack variable:

⇒ wi ≤ C, i = 1, . . . , n

Plugging in all these minimizers back into the Lagrangian (and thus minimizing the Lagrangian) yields:

g(w) =
1

2
wT X̃T X̃w + wT1

Since g(w) is putting a lower bound on the primal objective function, we would like to maximize it, with
consideration of the constraints we used:

min
w

1
2‖X̃Tw‖22 + wT1

s.t. 0 ≤ wi ≤ C, i = 1, . . . , n
wT y = 0

You can check that Slater’s condition is satisfied, and that we have strong duality. We will also shortly learn
that β = wT X̃ (which was the minimizer of the Lagrangian with respect to β). This gives us a mapping
from the dual solution to the primal solution (i.e., we can solve the dual problem, which may be easier, and
then easily map the dual optimal solution to the primal optimal solution). This correspondence comes from
the KKT conditions.
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11.6 Duality Gap

Given primal feasible x and dual feasible u, v:

f(x)− g(u, v) is called the duality gap

Note that

f(x)− f(x∗) ≤ f(x)− g(u, v)

This implies that if the duality gap f(x) − g(u, v) is zero, then we’ve reached an optimal primal solution
(f(x)− f(x∗) = 0). Also, u, v are dual optimal.

The duality gap has a direct algorithmic use: if f(x)− g(u, v) ≤ ε, then we know f(x)− f(x∗) (i.e., we know

how close we are to the optimal solution). This is different from a criterion threshold method ( f(x
k+1)−f(xk)
xk ),

which is a measure of the function value drop, not how close we are to the optimal value.

11.7 Dual Norms

Consider a norm ‖x‖.

For example,

`p norm: ‖x‖p =
( n∑
i=1

|xi|p
)1/p

, for p ≥ 1

trace norm: ‖X‖tr =

r∑
i=1

σi(X)

We can define the dual norm ‖x‖∗ as:

‖x‖∗ = max
‖z‖≤1

zTx

Dual norms can be useful in proofs, such as proving subgradients for particular norms. We can derive a
Cauchy-Schwartz-like inequality from this definition:

|zTx|
‖z‖ ≤ ‖x‖∗ ⇒ |z

Tx| ≤ ‖z‖‖x‖∗

The example norms also have duals:

`p norm dual: (‖x‖p)∗ = ‖x‖q, where
1

p
+

1

q
= 1
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Trace norm dual: (‖X‖tr)∗ = ‖X‖op = σmax(X)

Also note that the dual norm of the dual norm is the norm (‖x‖∗)∗ = ‖x‖.
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