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12.1 Recap on duality

For a minimization problem:
minx f(x)
subject to hi(x) ≤ 0, i = 1, ...m

`j(x) = 0, j = 1, ...r

The Lagrangian is defined as:

L(x, u, v) = f(x) +

m∑
i=1

uihi(x) +

r∑
j=1

vj`j(x)

The Lagrange dual function is:
g(u, v) = min

x
L(x, u, v)

The corresponding dual problem is:
maxu,v g(u, v)
subject to u ≥ 0

The Lagrange dual function can be viewd as a pointwise maximization of some affine functions so it is always
concave. The dual problem is always convex even if the primal problem is not convex.

For any primal problem and dual problem, the weak duality always holds:

f∗ ≥ g∗

When the Slater’s conditioin is satisfied, we have strong duality so f∗ = g∗.

The dual problem sometime can be easier to solve compared with the primal problem and the primal solution
can be constructed from the dual solution.

12.2 Karush-Kuhn-Tucker conditions

Given general problem
min f(x)
subject to hi(x) ≤ 0, i = 1, ...m

`j(x) = 0, j = 1, ...r

The Karush-Kuhn-Tucker conditions (KKT conditions) are:
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• Stationarity: 0 ∈ ∂f(x) +
∑m
i=1 ui∂hi(x) +

∑r
j=1 vj∂`j(x)

• Complementary: uihi(x) = 0 for all i

• Primal feasibility: hi(x) ≤ 0, `j(x) = 0 for all i, j

• Dual feasibility: ui ≥ 0 for all i

Warning: Concerning the stationarity condition: for a differentiable function f , we cannot use ∂f(x) =
{∇f(x)} unless f is convex.

Theorem 12.1 For a problem with strong duality (e.g., assume Slaters condition: convex problem and there
exists x strictly satisfying non-affine inequality contraints), x∗ and u∗, v∗ satisfy the KKT conditions if and
only if x∗ and u∗, v∗ are primal and dual solutions.

Proof: We first prove the necessity: Let x∗ and u∗, v∗ be primal and dual solutions with zero duality gap
(i.e. strong duality holds), then

f(x∗) = g(u∗, v∗)

= min
x
f(x) +

m∑
i=1

u∗i hi(x) +

r∑
j=1

v∗j `j(x)

≤ f(x∗) +

m∑
i=1

u∗i hi(x
∗) +

r∑
j=1

v∗j `j(x
∗)

≤ f(x∗)

Thus, all inequalities above are actually equalities, which means:

• x∗ minimizes L(x, u∗, v∗) over x, i.e.,

0 ∈ ∂xL(x∗, u∗, v∗)

0 ∈ ∂f(x∗) +
∑

u∗i ∂hi(x
∗) +

∑
v∗j ∂`j(x

∗)

which is the stationary condition.

•
∑
u∗i hi(x

∗) = 0, i.e.,
u∗i hi(x) = 0 for all i

which is the complementary slackness condition.

• The primal and dual feasibility of (x∗, u∗, v∗) hold.

Then we prove the sufficiency. If there exists x∗, u∗, v∗ that satisfy the KKT conditions, then

g(u∗, v∗) = f(x∗) +

m∑
i=1

u∗i hi(x
∗) +

r∑
j=1

v∗j `j(x
∗)

= f(x∗)

where the first equality holds from stationarity, and the second holds from complementary slackness. There-
fore, the duality gap is zero, so x∗ and u∗, v∗ are primal and dual optimal respectively.
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It should be noticed that for unconstrained problems, KKT conditions are just the subgradient optimality
condition.

For general problems, the KKT conditions can be derived entirely from studying optimality via subgradients:

0 ∈ ∂f(x∗) +

m∑
i=1

N{hi≤0}(x
∗) +

r∑
j=1

N{hi≤0}(x
∗)

12.3 Example

12.3.1 Quadratic with equality constraints

For any Q � 0, the quadratic problem is defined as:

minx∈Rn
1
2x

TQx+ cTx
subject to Ax = 0

This is a convex problem only with equality constraints, so according to KKT conditions, x is a solution if
and only if:

[
−c
0

]
=

[
Q AT

A 0

]
×
[
x
u

]
for some u. This linear system contains stationarity and primal feasibility. Because there is no inequality
constrains the complementary slackness and dual feasibility are vacuous.

12.3.2 Water-filling

Consider the following optimization problem:

minx∈Rn −
∑n
i=1 log(αi + xi)

subject to x ≥ 0, 1Tx = 1

This problem arises from information theroy, where each variable xi represents the transmitter power al-
located to the i-th channel and log(αi + xi) gives the apacity or communication rate of the channel. The
problem can be regarded as allocating a total power of one to the channels in order to maximize the total
communication rate.

The Lagrangian is:

L(x, u, v) = −
n∑
i=1

log(αi + xi)−
n∑
i=1

uixi + v(

n∑
i=1

xi − 1)

The stationarity is:

− 1

αi + xi
− ui + v = 0

The complementary slackness is:
uixi = 0
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The primal feasibility is:
x ≥ 0, 1Tx = 1

The dual feasibility is:
ui ≥ 0

From the above result, we have:

v ≥ 1

αi + xi
and

xi(v −
1

αi + xi
) = 0

We argue taht if v ≥ 1
αi

, then xi must be 0; if v ≤ 1
αi

, then v = 1
αi+xi

, we can solve xi from above. Combine

the primal feasibility 1Tx = 1 we have the following problem:

n∑
i=1

max{0, 1

v
− αi}

This is a univariate equation and easy to solve. This reduced problem is called water-filling. Here the αi
can be thought as the ground level above patch i, and then we flood the region with water to a depth 1

v .
The total amount of water used is then

∑n
i max{0,

1
v − αi}. We can increase the flood level until we have

used a total amount of water equal to one.

12.3.3 Support vector machines

Given y ∈ {−1, 1}n, and X ∈ Rn×p, the support vector machine problem is

minβ,β0,ξ
1
2 ||β||

2
2 + C

∑n
i=1 ξi

subject to ξi ≥ 0, i = 1, ..., n
yi(x

T
i β + β0) ≥ 1− ξi, i = 1, ..., n

There are no equality constraints, so we can introduce dual variables v, w ≥ 0. From the KKT stationarity
condition:

0 ∈ ∂

{
1

2
||β||22 + C

n∑
i=1

ξi

}
Note that the objective function is differentiable, so we have

0 =
∑n
i=1 wiyi, β =

∑n
i=1 wiyixi, w = C1− v

The complementary slackness condition implies

viξi = 0, wi
(
1− ξi − yi(xTi β + β0)

)
= 0, i = 1, ..., n

Hence at optimality we have β =
∑n
i=1 wiyixi, and wi is nonzero only if yi(x

T
i β + β0) = 1− ξi. Such points

i are called support points

• For support point i, if ξi = 0, then xi lies on edge of margin, and wi ∈ (0, C];

• For support point i, if ξi 6= 0, then xi lies on wrong side of margin, and wi = C

We note that KKT conditions does not give a way to find solution of primal or dual problem-the discussion
above is based on the assumption that the dual optimal solution is known. However, as shown in figure.12.1,
it gives a better understanding of SVM: the dual variable wi acts as an indicator of whether the corresponding
point contributes to the decision boundary. This fact can give us more insight when dealing with large-scale
data: we can screen away some non-support points before performing optimization.
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Figure 12.1: The decision boundary of SVM

12.3.4 Uniqueness in `1 penalized problems

Using the KKT coditions and simple probability arguments, we have the following result:

Theorem 12.2 Let f be differentiable and strictly convex, let X ∈ Rn×p, λ > 0. consider

min
β∈Rp

f(Xβ) + λ||β||1

If the entries of X are drawn from a continuous probability distribution (on Rn×p), then w.p. 1 there is a
unique solution and it has at most min{n, p} nonzero components.

Proof: the KKT conditions are

−XT∇f(Xβ) = λs, si ∈
{
{sign(βi)}, βi 6= 0
[−1, 1], βi = 0

, i = 1, ..., n

Recall that f is strictly convex, Xβ, s are unique. Define S = {j : |XT
j ∇f(Xβ)| = λ}, which is also unique,

and note that any solution satisfies βi = 0 for all i /∈ S.

First assume that rank(Xs) < |S| (here X ∈ Rn×|S|, submatrix of X corresponding to columns in S). Then
for some i ∈ S,

Xi =
∑

j∈S\{i}

cjXj

for constants cj ∈ R, hence

siXi =
∑

j∈S\{i}

(sisjcj) · (sjXj)

Taking an inner product with −∇f(Xβ),

λ =
∑
j∈\{i}

(sisjcj)λ, i.e.,
∑

j∈S\{i}

sisjcj = 1
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Figure 12.2: Uniqueness in `1 penalized problems

In other words, we have proved that rank(Xs) < |S| implies siXi is in the affine span of sjXj , j ∈ S \ {i}
(subspace of dimension < n) as shown in figure.12.2.

We say that the matrix X has columns in general position if any affine subspace L of dimension k < n
doesn’t contain more than k + 1 elments of {±X1, ...,±Xp} (excluding antipodal pairs).

It is straightforward to show that, if the entries of X have a density over Rn×p, then X is in general position
with probability 1.

Therefore, if entries of X are drawn from continuous probability distribution, any solution must satisfy
rank(Xs) = |S|.

Recalling the KKT conditions, this means the number of nonzero components in any solution at most
≤ |S| ≤ min{n, p}. Further, we can reduce our optimization problem (by partially solving) to

min
βS∈R|S|

f(XSβS) + λ||βS ||1

Finally, strict convexity implies uniqueness of the solution in this problem, and hence in our original problem.

12.4 Relation between constrained and Lagrange forms

Often in statistics and machine learning we’ll switch back and forth between constrained form, where t ∈ R
is a tuning parameter,

min f(x) subject to h(x) ≤ t (C)

and Lagrange form, where λ ≥ 0 is a tuning parameter,

min f(x) + λ · h(x) (L)

and claim these are quivalent. We will show this claim is almost always true given the condition that f and
h are both convex.

(C) to (L): if problem (C) is strictly feasible, then Slater’s condition implies strong duality holds, and there
exists some λ ≥ 0 (dual solution) such that any solution x∗ in (C) minimizes

f(x) = λ(h(x)− t)
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so x∗ is also a solution in (L). So we can get the relationship:⋃
λ≥0

{solutions in (L)} ⊇
⋃

t such that (C)
is strictly feasible

{solutions in (C)}

(L) to (C): if x∗ is a solution in (L), then the KKT conditions for (C) are satisfied by taking t = h(x∗), so
x∗ is a solution in (C). So we can get the relationship:⋃

λ≥0

{solutions in (L)} ⊆
⋃
t

{solutions in (C)}

This is nearly a perfect equivalence-the only exception is the case (C) is not strictly feasible for some t. If
we introduce an extra condition that the only value of t that leads to a feasible but not strictly feasible
constraint set is t = 0, i.e.,

{x : h(x) ≤ t} 6= ∅, {x : h(x) < t} = ∅ ⇒ t = 0

(e.g., this is true is h is a norm) then we can get perfect equivalence:⋃
λ≥0

{solutions in (L)} =
⋃
t

{solutions in (C)}

12.5 From dual solutions to primal solutions

Under strong duality, we can characterize primal solutions from dual solutions. Recall that under strong
duality, the KKT conditions are necessary for optimality. Given dual solutions u∗, v∗, any primal solution
x∗ satisfies the stationarity condition

0 ∈ ∂f(x∗) +

m∑
i=1

u∗i ∂hi(x
∗) +

r∑
j=1

v∗i ∂`j(x
∗)

In other words, x∗ solves minx L(x, u∗, v∗).

• Generally, this reveals a characterization of primal solutions.

• In particular, if above problem has a unique minimizer, then the corresponding point must be the
primal solution.
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