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Last time, we have discussed about barrier method. Barrier method is used to solve problem

minimize
x

f(x)

subject to hi(x) ≤ 0, i = 1, . . . ,m.

Ax = b

(16.1)

By introducing variable t to eliminate the inequality constraints, we have

minimize
x

tf(x) + φ(x)

subject to Ax = b
(16.2)

where φ(x) is the log-barrier function φ(x) = −
∑m
i=1 log(−hi(x)).

16.1 Linear programming and its duality

The standard form of linear programming or primal problem is

minimize
x

cTx

subject to Ax = b

x ≥ 0

(16.3)

where A ∈ Rm x n, b ∈ Rm and c ∈ Rn. One note is that any linear program could be written in the standard
form. Moreover, we also assume that A is full row-rank (this condition could be viewed that there are no
linear dependence inside matrix A, otherwise we could remove some rows of A because of redundancy)

The dual of the above problem is

max
y

bT y

subject to AT y ≤ c
(16.4)

Adding slack variable s to the dual, we have a new form
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max
y,s

bT y

subject to AT y + s = c

s ≥ 0

(16.5)

Theorem(Weak duality): Assume x is primal feasible and y is dual feasible then

bT y ≤ cTx (16.6)

In other word, the objective value of dual is the lower bound of objective value of primal.

Proof : Assume that x is primal feasible and y is dual feasible, we have

cTx− bT y = (AT y + x)Tx− (Ax)T y = sTx ≥ 0 (16.7)

where s ≥ 0 is the dual feasibility condition and x ≥ 0 is the primal feasibility condition.

Theorem(Strong duality): Assume primal LP is feasible then it is bounded if and only if the dual is feasible.
In that case, their optimal values are the same and they are attained.

This is the important property of linear programming because this case leads to the equality of objective
function of both primal and dual problems. In this case, cTx − bT y = sTx = 0 (from weak duality) but
x, s ≥ 0 so sixi = 0 ∀i.

Since the strong and weak duality, the point x∗ and (y∗, s∗) are respectively primal and dual optimal solutions
if and only if x∗ is a feasible point of primal problem and (y∗, s∗) is a feasible point of dual problem. In
other words, (x∗, y∗, s∗) is the solution of

Ax = b

AT y + s = c

xjsj = 0, j = 1, · · · , n
x, s ≥ 0

(16.8)

The first two conditions and the last one guarantee (x∗, y∗, s∗) is feasible for both the primal and dual
problems. The third condition is derived from weak duality and it is called complementary condition.
Moreover, these conditions are exactly the KKT conditions.

There are two main classes of algorithms for linear programming

• Simplex method: It was developed by Dantzig around 1940 and is still one of the most popular
algorithms for linear programming. Its idea is to maintain first three condition and aim for the fourth
one.

• Interior-point method: Unlike the Simplex method, it tries to maintain the first two and the fourth
conditions while aiming for the third condition.

For history of simplex and interior-point methods, please read slide 9 of this lecture.

We can apply the barrier method from Equation 16.2 to eliminate inequality constraint of primal problem
in Equation 16.3
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minimize
x

cTx− τ
n∑
i=1

log xi

subject to Ax = b

(16.9)

Similarly to the dual in Equation 16.5, we have

max
y,s

bT y + τ

n∑
i=1

log si

subject to ATx+ s = c

(16.10)

Note: τ = 1
t > 0. Moreover, in dual problem, we maximize the objective so we need to flip the sign of

barrier function from negative to positive.

Take the dual of problem in 16.9, we have

L(x, y) = cTx− τ
∑

log xi + yT (b−Ax) = (c−AT y)Tx− τ
∑

log xi + bT y (16.11)

So the dual objective is minxL(x, y). If (c−AT y)T has one single negative component, it will make the dual
objective infinite. So, to make dual objective finite, we require c−AT y > 0

Let s = (c−AT y), then si > 0 for all i. We also have:

L(x, y) =
∑
i

(sixi − τ log xi) + bT y

Thus, we can minimize component wise w.r.t. x, and have:

min
xi

sixi − τ log xi = τ − τ log(τ/si),

since the optimal xi = τ/si. Thus

min
x
L(x, y) = nτ − τ

∑
log

τ

si
+ bT y

So the dual problem, modulo a constant (nτ), is the problem 16.10.

16.2 Primal-dual Central Path and Key Idea of Primal-dual Inte-
rior Point Method

The KKT condition of the pair of barrier problem says the optimal solutions satisfies:

Ax = b

AT y + s = c

xjsj = τ

x, s > 0

(16.12)

which we can call a perturbed KKT condition of the original problem (before adding the barrier functions).
We define the primal-dual central path as the set of {x(τ), y(τ), s(τ) : τ > 0}, where for each τ > 0,
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x(τ) and (y(τ), s(τ)) are solutions to the pair of barrier problems. Note that for each τ , there is at most one
triple (x, y, s), since both primal and dual have strictly convex objectives due to the log barrier function.

The key idea of the algorithm is then to generate (xk, yk, sk) at each step k, in order to approximate
(x(τk), y(τk), s(τk)), where τk > 0 is a decreasing sequence. There are three details in implementing this
idea: (1) measurement of proximity to the central path, (2) behavior of τk, and (3) update rule of (xk, yk, sk).

We define the strictly feasible set as

F0 := {(x, y, s) : Ax = b, AT y + s = c, x, s > 0}. (16.13)

For x, s in Rn, we define X := diag(x), and S := diag(s), and the vector (x1s1, x2s2, ...., xnsn) can be written

as XS1. For x, s in Rn+ we define µ(x, s) := xT s
n .

A couple observations of the above definitions: (1) Recall that xisi ≥ 0, so XS1 ∈ Rn++, and such mapping
from (x, y, s) ∈ F0 to Rn++ is a bijection (not proved in class). Hence we can study the central path in the
space of Rn++ using XS1. (2) Recall that the duality gap of the original probelm cTx− bT y = xT s ≥ 0, so
intuitively µ(x, s) measures how close the solution is to the optimality.

Now we can define two types of neighborhoods of the central path: For θ ∈ (0, 1), the two-norm neighborhood
of the central path is:

N2(θ) := {(x, y, s) ∈ F0 : ‖XS1− µ(x, s)1‖2 ≤ θµ(x, s)}. (16.14)

For γ ∈ (0, 1), the one-sided infinity-norm neighborhood of the central path is:

N−∞(γ) := {(x, y, s) ∈ F0 : xisi ≥ γµ(x, s), i = 1, ..., n}. (16.15)

To understand N2(θ), we note that when (x, y, s) is on the central path iff there is some τ > 0, such that
for all i, xisi = τ , i.e., the vector XS1 ∈ Rn++ is on the ray 0 + τ [1, 1, ..., 1]T . Hence in the space of XS1,
N2(θ) defines a cone sandwiching the [1, 1, ...1] ray, which is the central path after the XS1 mapping. The
larger θ is, the wider the cone.

Similarly, N−∞(γ) also defines a cone in the space of XS1. However, the cone can be much wider than
its two-norm counterpat. In particular, as γ approaches 0, N−∞(γ) approaches F0. Note that this doesn’t
happen to N2(θ) when θ approaches 1.

We will see later in the algorithm how τ is updated. To update (xk, yk, sk), we will use the following Newton’s
method for solving equations: recall that (x(τ), y(τ), s(τ)) solves AT y + s− c

Ax− b
XS1

 =

 0
0
τ1

 , x, s > 0 (16.16)

Then for each Newton step, we update with (∆x,∆y,∆s) satisfying the following: 0 AT I
A 0 0
S 0 X

 ∆x
∆y
∆s

 =

 0
0

τ1−XS1

 . (16.17)

Recall that if we were to solve f(x) = 0, Newton’s step update ∆x satisfies that ∇f(x)T∆x = −f(x), and
x+ = x+ ∆x.

16.3 Short-step path following algorithm

Let θ, δ ∈ (0, 1) be such that θ2+δ2

23/2(1−θ ≤
(

1− delta√
n

)
θ
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Let (x0, y0, s0) ∈ N2(θ)
For k = 0, 1, . . .

Compute Newton step for

(x, y, s) = (xk, yk, sk), τ =
(

1− δ√
n

)
µ(x, s)

Set (xk+1, yk+1, sk+1) := (xk, yk, sk) + (∆x,∆y,∆s)

For example, one could choose θ = δ = 0.4 to satisfy the first inequality constraint in the SPF algorithm.
The algorithm begins with a point in the neighborhood of the central path (i.e. (x0, y0, s0) ∈ N2(θ)). Then
at each step, we compute the Newton step in the direction a little further along the central path (i.e. a
slightly smaller value of τ). This can be thought of as ‘chasing’ the central path.

Notice the difference between this dual-primal interior point method and the log-barrier method from Lecture
15. There is no need for an inner and an outer loop! At each iteration, we are only taking a single unit
Newton step and guarantee the new solution is still in the neighborhood of the central path (∈ N2(θ)).
Further, the new solution is guaranteed to decrease µ(xk, sk), i.e. it moves in the correct direction.

Theorem 16.1 The sequence generated by Algorithm SPF satisfies

(xk, yk, sk) ∈ N2(θ) (16.18)

and

µ(xk+1, sk+1) =

(
1− δ√

n

)
µ(xk, sk) (16.19)

Corollary 16.2 In O
(√

n log
(
nµ(x0,s0)

ε

))
the algorithm yields (xk, yk, sk) ∈ F0 such that

cTxk − bT yk ≤ ε (16.20)

Proof: Only a sketch for the proof of Theorem 16.1 was covered in class. Here, we want to iteratively show
x+ = xk+1 = x + ∆x, y+ = yk+1 = y + ∆y and s+ = sk+1 = s + ∆s all stay in the neighborhood of the
central path N2.

Ax+ = Ax+A∆x (16.21)

= b+ 0 (16.22)

= b (16.23)

because x was in the neighborhood of the central path (thus x ∈ F0, so Ax = b) and A∆x = 0 from the
Newton step equations.

Likewise,

AT y+ + s+ = AT y + s+AT∆y + ∆s (16.24)

= c+ 0 (16.25)

= c (16.26)

because AT y + s = c when y and s were both in the neighborhood of the central path and AT∆y + ∆s = 0
from the Newton step. Thus, the new solution (x+, y+, s+) is feasible (i.e. ∈ F0).
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The difficult part of the proof is to show x+ and s+ are positive and the inequality ||XS1 − µ(x, s)1||2 ≤
θµ(x, s) holds. We do not consider these issues here, and instead proceed to the second part of Theorem
16.1 (Eq 16.19) and Corollary 16.2. If you look at

X+S+1 = (X + ∆X)(S + ∆S)1 (16.27)

= X∆S + S∆X + ∆X∆S1 +XS1 (16.28)

= τ1−XS1+ ∆X∆S1+XS1 (16.29)

= τ1+ ∆X∆S1 (16.30)

where X∆S + S∆X = τ1−XS1 from the Newton steps.

µ(x+, s+) =
1

n
(x+)T s+ (16.31)

=
1

n
(nτ + ∆xT∆s) (16.32)

= τ +
1

n
∆xT∆s (16.33)

=

(
1− δ√

n

)
µ(x, s) +

1

n
∆xT∆s (16.34)

=

(
1− δ√

n

)
µ(x, s) (16.35)

where τ =
(

1− δ√
n

)
µ(x, s) by the definition of the SPF algorithm and ∆xT∆s = 0 by using two of the

Newton step equations: {
AT∆y + ∆s = 0
A∆x = 0

(16.36)

∆xTAT∆y + ∆xT∆s = 0 (16.37)

0T∆y + ∆xT∆s = 0 (16.38)

∆xT∆s = 0 (16.39)

After k iterations, Eq 16.35 becomes

µ(xk, sk) =

(
1− δ√

n

)k
µ(x0, s0) (16.40)

Lastly, the corollary follows from the previous equation:

cTx− bT y = nµ(x, s) ≤ ε (16.41)

n

(
1− δ√

n

)k
µ(x0, s0) ≤ ε (16.42)(

1− δ√
n

)k
≤ ε

nµ(x0, s0)
(16.43)

k log

(
1− δ√

n

)
≤ log

(
ε

nµ(x0, s0)

)
(16.44)

k ≥ O
√
n log

(
nµ(x0, s0)

ε

)
(16.45)
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(this part was not explicitely derived in class, I just did it here).

This is called the ‘short-step’ path following algorithm because the N2 neighborhood is so narrow the steps
must be very small.

16.4 Long-step path following algorithm

The idea of long-step path following is very similar, except using the larger neighborhood of N−∞. The only
major difference is long-step path following may require the use of line search to stay in the neighborhood
(ie. the choice of αk).

Let γ ∈ (0, 1) and 0 < σmin < σmax < 1
Let (x0, y0, s0) ∈ N−∞(γ)
For k = 0, 1, . . .

Choose σ ∈ [σmin, σmax]
Compute Newton step for

(x, y, s) = (xk, yk, sk), τ = σµ(xk, sk)
Choose αk as the largest α ∈ [0, 1] such that

(xk, yk, sk) + α(∆x,∆y,∆s) ∈ N−∞(γ)
Set (xk+1, yk+1, sk+1) := (xk, yk, sk) + αk(∆x,∆y,∆s)

Theorem 16.3 The sequence generated by Algorithm LPF satisfies

(xk, yk, sk) ∈ N−∞(θ) (16.46)

and

µ(xk+1, sk+1) ≤
(

1− δ

n

)
µ(xk, sk) (16.47)

for some constant δ that depends on γ, σmin, σmax but not on n

Corollary 16.4 In O
(
n log

(
nµ(x0,s0)

ε

))
the algorithm yields (xk, yk, sk) ∈ F0 such that

cTxk − bT yk ≤ ε (16.48)

Theoretically, the bound on the long-step algorithm requires more iterations than the bound on the short-step
algorithm. However, the long-step usually performs better in practice.

16.5 Infeasible interior-point algorithms

Both SPF and LPF require finding an initial point (x0, y0, s0) ∈ F0. The IPF algorithm only requires
x0, s0 > 0 but does not guarantee the solutions xk, sk, yk stay in some neighborhood. However, µ values will
converge to 0 linearly, as do the residuals.

We did not have time to cover the actual IPF algorithm, nor other topics on ‘IPF for more general convex
optimization’ and the ‘Primal-Dual Algorithm.’


