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17.1 Review from last lecture

Last time we discussed the primal-dual interior-point methods for linear programming. The primal problem
is

min cTx

Ax = b (17.1)

x ≥ 0

And the dual problem is

max bT y

AT y + s = c (17.2)

s ≥ 0

The primal linear programming problem is in standard form. The dual problem is also a linear programming.
With the theorem of strong duality, if and only if the dual problem is feasible, the two optimal values match.
Several things we defined

• F0:={(x, y, s) : Ax = b, AT y + s = c, x, s > 0}

• Given x, s ∈ Rn+, µ(x, s):=xT s
n

• N2(θ) := {(x, y, s) ∈ F0 : ||XS1− µ(x, s)1||2 ≤ θµ(x, s)}

Intuitively, µ is some measurement of the duality gap. In other words. it measures how far we are form the
optimal point.

Recall that the central path equations are

AT y + s = c (17.3a)

Ax = b (17.3b)

XS1 = τ1 (17.3c)

x, s ≥ 0 (17.3d)
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The key step of the IPM algorithm is the Newton step0 AT I
A 0 0
S 0 X

∆x
∆y
∆s

 =

 0
0

τ1−XS1

 (17.4)

Ideally, the Newton step updates the points and finally finds the optimal solution for both primal and dual
problems. The essence of the Newton step is linearizing the equation 17.3a,17.3b and 17.3c in the central
path. One can think of Newton’s method in two ways: an optimization method or an algorithm for solving
equations. Here the Newton step is used in the second way.

The short-step path following algorithm requires that the initial point located in F0. To eliminate this
requirement, an infeasible interior-point algorithm is proposed with a different Newton step0 AT I

A 0 0
S 0 X

∆x
∆y
∆s

 = −

 rc
rb

XS1− τ1

 (17.5)

where rb = Ax − b and rc := AT y + s − c. Note that in both short-step path following algorithm and the
infeasible interior-point algorithm, computing the Newton step is the most expensive step. Everything else
is cheap in these two algorithms.

17.2 Semidefinite program

17.2.1 standard form and the dual

The standard form of semidefinite program is

min
X

C•X

subject to A(X) = b (17.6)

X � 0

where A : Sn → Rm is a linear map which is supposed to be surjective, b ∈ Rm, C ∈ Sn. Similar to linear
programming, we can derive the dual problem of 17.6 as

max
y

bT y

subject to A∗(y) � C (17.7)

Or equivalently, introduce a slack variable S

max
y,S

bT y

subject to A∗(y) + S = C (17.8)

S � 0

Where A∗ : Rm → Sn.

To better understand the semidefinite program, we need to pay more attention to A∗ and A. Typically, we
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have

A(X) =

A1•X
...

Am•X

 (17.9)

A∗(y) =
∑
i

yiAi (17.10)

17.2.2 Weak duality and strong duality

Like what we did with linear programming, we hope to check relationship between the primal and dual
problems.

Theorem 17.2.1. (Weak duality) Assume X is primal feasible and y is dual feasible. Then

bT y ≤ C•X

The proof of weak duality is almost the same as the weak duality for linear programming.

Theorem 17.2.2. (Strong duality)Assume both primal and dual problems are strictly feasible. Then their
optimal values are the same and they are attained.

Recall that in linear programming, we almost always have strong duality. The only exception is that the
primal problem is unbounded or infeasible. In seminidifinite programming, things are different. If we assume
both primal and dual problems are strictly feasible, the strong duality holds.If we do not have this condition,
then duality will break down. This is one of the distinction between linear programming and semidifinite
programming.

Here are several examples where the strong duality does not hold

1. The first example is

min 2x12[
0 x12
x12 x22

]
� 0 (17.11)

This problem is equivalent to a standard form semidifinite programming problem

min C•X
A1•X = b (17.12)

X � 0

where

C =

[
0 1
1 0

]
(17.13a)

A1 =

[
1 0
0 0

]
(17.13b)

b = 0 (17.13c)
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The dual would be

max 0 · y[
y 0
0 0

]
�
[
0 1
1 0

]
(17.14)

To guarantee that

[
0 x12
x12 x22

]
� 0, we must have x12 = 0. Hence the primal optimal value is 0.

Now consider the constraint in dual problem. To make

[
y 0
0 0

]
�
[
0 1
1 0

]
, we need

[
−y 1
1 0

]
� 0. This

is impossible no matter what value y is. The dual problem is infeasible. So the strong duality does not
hold in this example.

2. The second example is

min x11[
x11 1
1 x22

]
� 0 (17.15)

Similarly, this is equivalent to a standard form semidifinite programming problem

min C•X
A1•X = b (17.16)

X � 0

where

C =

[
1 0
0 0

]
(17.17a)

A1 =

[
0 1
1 0

]
(17.17b)

b = 2 (17.17c)

The dual would be

max 2y[
0 y
y 0

]
�
[
1 0
0 0

]
(17.18)

Dual optimal value is 0, attained at y = 0. Primal optimal value is 0, while it is not attained because
we need to make x11 positive. Strong duality does not hold.

3. The third example is

min ax22 0 x12 1− x22
x12 x22 x23

1− x22 x23 x33

 � 0 (17.19)
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The dual problem of this example is

max 2y2y1 0 y2
0 2y2 0
y2 0 0

 �
0 0 0

0 a 0
0 0 0

 (17.20)

The primal optimal value is 1 which is attainable. The dual optimal value is 0 which is attainable as
well.

From these three examples, we know that the strong duality for semidifinite programming requires more
conditions.

17.2.3 Optimality conditions

Assume strong duality holds. Then the points X∗ and (y∗, S∗) are respectively primal and dual optimal
solutions if and only if (x∗, y∗, S∗) solves

A(X) = b (17.21a)

A∗(y) + S = C (17.21b)

XS = 0 (17.21c)

X,S � 0 (17.21d)

These are like the KKT conditions for both the primal and dual problems. To maintain 17.21a, 17.21b and
17.21d, and aim for 17.21c, the interior-point methods for semidefinite programming are developed.

17.2.4 Interior-point methods for SDP

Let’s start from the Barrier method for semidefinite programming. If we are going to do something like the
Barrier method for linear programming, we approximate the primal SDP by

max C ·X − τ log(detX)

subject to A(X) = b (17.22)

Here the barrier function F : Sn++ → < is:

F (X) = − log detX = − log

n∏
j=1

λj(X) (17.23)

= −
n∑
j=1

log(λj(X)) (17.24)

Recall the barrier function in linear programming is −
∑n
j=1 log xj , so we actually extend the function form

<n to Sn++, even though the log determinant function is just an kind of approximation, it does come up in
some statistical models, so it’s a key objective for positive semidefinite matrix.

And as we did last time, the barrier dual problem of SDP is:

max bT y + τ log(detS)

subject to A?(y) + S = C (17.25)
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So the SDP also has the nice duality connection, and very much as we did for linear programming, the
optimality conditions for both primal and dual problems are these conditions.

A(X) = b (17.26)

A∗(y) + S = C (17.27)

XS = τI (17.28)

X,S � 0 (17.29)

Recall that if we have function f(t) = − log t, then the derivative if f ′(t) = − 1
t . So for F (X) = − log det(X),

we have ∇F (X) = −X−1, then if we write down the KKT conditions, we will get the above optimality
conditions.

So following the same idea in linear programming we did, we are going to chase points that are near central
path when τ goes to zero. And like what we did last time, we need to find some kind of proximity to the
central path, and we want to define how we update the parameters. Then we denote

F0 := {(X, y, S) : AX = b,A?y + S = C,X, S � 0} (17.30)

which is the primal and dual strictly feasible points. Then

µ(X,S) :=
X ·X
n

(17.31)

is the gap between the pair of dual and primal problems. Then we use dF (X,S) as some kind of measure
of proximity of XS to µI. So we don’t require XS be equal to µI, instead we allow small difference. There
are deep mathematics about how to measure the difference, basically we are comparing the eigenvalue of the
matrix, here is the definition:

dF (X,S) := ‖λ(XS)− µ(X,S)‖2 (17.32)

=
∥∥∥X1/2SX1/2 − µ(X,S)I

∥∥∥
F

(17.33)

=
∥∥∥S1/2XS1/2 − µ(X,S)I

∥∥∥
F

(17.34)

After we have the idea of how to define the difference, we define the local neighborhood NF (θ) as

NF (θ) := {(X, y, S) ∈ F0 : dF (X,S) ≤ θµ(X,S)} (17.35)

Then if we have the Newton step to proceed the central path following procedures, we’ll have we pretty
similar interior-point algorithm for SDP. Here is the algorithm procedures:

1. Let θ, δ ∈ (0, 1) be such that

7(θ2 + δ2)

1− θ
≤

(
1− δ√

n

)
θ (17.36)

2
√

2θ

1− θ
≤ 1 (17.37)

2. Let (X0, y0, S0) ∈ NF (θ)

3. For k = 0, 1, · · ·
Compute Nesterov-Todd direction for

(X, y, S) = (Xk, yk, Sk) (17.38)

τ =

(
1− δ√

n

)
µ(X,S) (17.39)
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Set

(Xk+1, yk+1, Sk+1) := (Xk, yk, Sk) + (∆X,∆y,∆S) (17.40)

And here is the convergence theorem, which is almost identical to what we did in linear programming.

Theorem 17.2.3. The sequence generated by Algorithm SPF satisfies

(Xk, yk, Sk) ∈ NF (θ)

and

µ(Xk+1, Sk+1) =

(
1− δ√

n

)
µ(Xk, Sk)

Corollary 17.2.3.1. In O
(√

n log(nµ(X
0,S0)
ε )

)
the algorithm yields (Xk, yk, Sk) ∈ F0 such that

C ·Xk − bT yk ≤ ε

We also have the similar results for long step and infeasible step methods.

17.2.5 Nesterov-Todd direction

To get the Newton step, we want to solve the system of equations. For the feasible method,

A?(y) + S − C = 0 (17.41)

A(X)− b = 0 (17.42)

XS = τI (17.43)

The third formula is hard to satisfy, so what we do next is a kind of linearization. First we rewrite the
equations above as:

G(X, y, S)−

 0
0
τI

 = 0 (17.44)

Then we linearize G, the first two equations are already linear, so we only need to care about XS, then we
can write S∆X + X∆S − τI −XS = 0, which is the natural linearization, then we can write the Newton
step as: 0 A? I

A 0 0
S 0 X

∆X
∆y
∆S

 =

 0
0

τI −XS

 (17.45)

This linearization involves some symmetric issues, which may lead the update no longer in the feasible
domains, so we need a more careful linearization. Here comes the Nesterov-Todd direction.

If we write the equation as

S − τX−1 = 0 (17.46)

Then the linearization is

τX−1∆XX−1 + ∆S = τX−1 − S (17.47)
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where we use the fact that ∂X−1 = X−1∆XX−1. Also we have

X − τS−1 = 0 (17.48)

So

∆X + τS−1∆SS−1 = τS−1 −X (17.49)

Then we claim that the proper primal-dual linearization will the average both equations. Define W as the
geometric mean of X,S,

W = S−1/2
(
S1/2XS1/2

)
S−1/2 (17.50)

= X−1/2
(
X1/2SX1/2

)
X−1/2 (17.51)

So

W−1∆XW−1 + ∆S = τX−1 − S (17.52)

or equivalently

∆X +W∆SW = τS−1 −X (17.53)

Once we have this linearization, we can calculate the Newton step and proceed the interior-point methods.

17.3 Self-scaled cones

We can use the interior-point method even further to a class of cones called self-scaled cones. The idea is
we can think of both linear and semidefinite programming as the special cases. For the linear programming,
the cone is <n+ and for the semidefinite programming the cone is Sn++. Then all we built for linear and
semidefinite programming can be taken farther of the cones to the conic programming problems, as long as
we define a good barrier function.

For the second order cones, the barrier function is like:

F (x) = − log(x20 − ‖x̄‖
2
) (17.54)

Then all the technical parts are similar to what we did for linear programming and semidefinite programming.

17.4 Conic Programming Solvers

Here we talk a little about how these theory are implemented. We can think about the matrix as a n2 long
vector.

X = [X11 X22 · · ·Xnn]
T

(17.55)

Which is called vec mapping in MATLAB, then mat is the inverse of vec. Another related mapping is svec:

X =
[
X11

√
2X12 · · ·

√
2X1n X22 · · ·

√
2Xn−1,n Xnn

]T
(17.56)

These we can write

X · S = vec(X)T vec(S) (17.57)

= svec(X)T svec(S) (17.58)

Then here is an introduction to one of the existing solvers.
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17.4.1 SeDuMi

SeDuMi can be used in MATLAB and has simple syntax. SeDuMi performs very well for small problems, but
for large-scale problems, interior-point method meet a major bottleneck for computation. That is because of
the hardness and solve the linear system to get the Newton step since the Hessian matrix is very complicated.
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