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20.1 Review: Graph fused lasso

Essentially the same story holds (vs. linear trend filtering) when D is the fused lasso operator on an arbitrary
graph:

e Primal subgradient is slow, primal prox is intractable i.e., proz.(8) = argmin, 5||8 — z||3 + || Dz|x

e Dual prox is cheap to iterate, but slow to converge

e Dual interior point method solves structured linear systems, so its iterations are efficient, and is pre-
ferred

20.1.1 What we need for the dual prox

e Conjugate loss of f*

e Solve for primal solution 3 from dual: —Vf(8) +DTu =0

The above items are simple, but it’s slow to converge.

20.1.2 What we need for interior point method

tf*(—=DTu) + ¢(u) Hessian: tDV?f*(—DTu)DT + V2¢(u) For gaussian logistic loss, V2f*(—DTu) and
V2¢(u) are diagonal matrices, and D and DT are structured matrices.

Reminder: for fused lasso over graph,

-1 1
D— -1 1
-1 1

DT D = L is the graph Laplacian, and solving this (and interior point method) can be done very efficiently.
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20.2 Regression Problems

Consider the same D, and the same Gaussian and logistic losses, but with regressors or predictors z; € R,
i=1,..n

%Z yi — xl B)? (20.1)

and
n

F(B) = (—wix] B+ log(1 + exp(x] B))) (20.2)

=1

respectively. If the predictors are connected over a graph, and D is the graph fused lasso matrix, then the
estimated coefficients will be constant over regions of the graph. Assume that the predictors values are
arbitrary. Everything in the dual is more complicated now.

Example: z; representing pixels of brain scan, y; 1 or 0 indicating presence of disease. x7 3 regularlized
according to -, ; |# — B;| with [ and j being neighbors.

We can rewrite the problem. For the primal case:
min h(X8) + N[ D] (20.3)

where f(8) = h(X[) is the loss, and X € R™P is the predictor matrix.

Solving for the dual:

Let « = X and z = Df3, so we can rewrite the primal equation as:
min h(a) + A|z|11

— B,z
subject to Xf=a, D=2z

L(B,a,z,u,v) = h(a) + N|z|[1 + uT (DB — 2) + vT (XB — a) (20.4)
=h(a) —vTa+ A(||z]l1 —uT2/\) + (DTu+ XTv)T3 (20.5)
Hence, for the dual:
min h*(v)

subject to  XTw 4+ DTu =0, [|ul] <\

From the dual, We can derive the dual proximal gradient:

prox:(u,v) = argmin lH o |12
’ S 20\ w )2

subject to DTz 4+ XTu=0, ||2]| <\

This is finding the projection of (u, v) onto the intersection of a plane and a (lower-dimensional) box. This
is not a problem that we can solve in closed form.
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From the dual, the dual interior point method has to respect the equality constraint, X”v 4+ DTu = 0. And
when we augment the inner linear systems, their structure is ruined, since X is assumed to be dense. The
newtop step is hence much slower.

By the KKT conditions, we can see that the dual and primal are related by the following equations:

Vh(XB)—5=0 (20.6)
— XTVh(XB)+ D a=0 (20.7)
For the gaussin loss: k() = 3|y — 6]|3 So,
XT(y - XB) = D"u (20.8)
XTxp=Xx"y—- D"y (20.9)

Computing from the dual requires solving a linear system in X7 X, which is very expensive for generic X.

Consider the primal subgradient method:

g=XTVh(XB)+ ADTy (20.10)

where 7 € ||Dg]||1 This works, but very slow.

In fact, for large and dense X, our best option is probably to use primal proximal gradient descent:

1
prox(B) :argme—tHﬁsz%Jr)\HDﬁHl (20.11)

where the gradient is

VF(B) = XTVh(XB) (20.12)

The prox operator is not evaluated in closed-form. We can solve this with a dual interior point until
convergence. We have freed ourselves entirely from solving linear systems in X.
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20.3 Examples

Relative importance: dementia vs normal f\ 1 demantia vs narmal
facell 2 - I - |
cdaystd - (.
newthghd 1 — — .1
estrop3s —{ - —chDDZ
foart5 1 | (R s newthoRE. |
carys | EE— 2 =
gend0! —| R 5 o501
- — B =
hetz6 2 L i
race0l.1 | 2 — 01
orhos2] - o 03
1 puse?t
pulse21 | e ————
orpsymOs.1 % -_— s
sick032 < — 0030
i _— = e
trusi033 L]
T T T T ul T r T T T T T T 1
0 D 4 @ 65 70 T5 80 685 %0 9 100
Age
Relative importance: death vs normal ﬁ 5 death vs normal
digeor - I -
cme2i —| (.
gendd! — — amezt
cisd2 - 4 —
| — = -
hurmy£9.2 daaca 3
numegts - - — — i
dglé -| é iy
- whmeeos 2
smake 3 — R s | l——— e
Hith153.1 — (R 2 — R
exersy —| NI o — ]
aa
nomedslé { o — a2
diabada 3 = 51 — kst 1
anyone: | EEED =
aai = —
whmie(9.2 — o
r T T T 1 T T T T T T
0 n @ & © W 65 T0 T5 80 85 %0 55 100
Age
(a) (b)

Figure 20.1: (a) Xin et al. ”Efficient generalized fused lasso and its application to the diagnosis of
Alzheimers disease” (2014) (b) Adhikari et al. (2015) ”High-dimensional longitudinal classification with the
multinomial fused lasso”

Figure 20.1 (a) shows an example of applying a fused lasso over MRI images to to predict the onset of
Alzheimer’s disease.

Figure 20.1 (b) is another example. In this case, an algorithm that was used is exactly what we discussed.
It precisely uses proximal gradient to get rid of the X matrix and they do something clever with the prox.

You can look into [XK2014], [AL2015] for more details if you are interested.

20.4 1d Fused Lasso

20.4.1 1d Fused Lasso

Let’s go to a very special case of the things we talked about. We talked about fused lasso over the graphs
with regressors. What happens if the graph is just a chain? What we are doing become a 1d fused lasso.
We just have to penalize the difference between adjacent nodes.
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Figure 20.2: Chain Graph

We could do what we learned before: do proximal gradient to get rid of the X matrix, and solve each
prox step by going to the dual and running interior point method. But in this special case, there is a very
specialized algorithm for solving the prox that does not require you to go to the dual. Because of the linear
structure you can see in Figure 20.2, you can use a direct method to solve the prox which is not iterative like
interior point method. It’s not only true for the chain graph but also for the complete graph. The point here
is for certain graph structures, chain, complete, or other kind of very structured graphs, you might spend a
few minutes look up the literature to see whether or not you can solve the prox in a more efficient manner
than the interior point method.

1 -
prox,(f) = argmin —||8 — z||3 + /\Z |2 — ziy1] (20.13)
z 2t i=1

For this prox, the answer is dynamic programming. In some sense this method goes up to Bellman in 1960’s,
but there’s more recent kind of formulations of dynamic programming (reference!!) and they are all linear
time algorithms. Using these algorithms, we don’t need to do anything which is more involved with the dual.
Rather than running the generic algorithm like interior point tmethod, we can find some faster codes from
the literature.

20.4.2 Performance Comparison
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Figure 20.3: Dynamic programming vs. Banded matrix solve
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Figure 20.3 is an empirical evaluation showing how fast this proximal operator is. It’s order of n but
it’s order of n with a very small constant. You'll see how small that constant is just by comparing that
proximal operator in blue to a banded matrix solve. The x-axis is a problem size, n, and the y-axis is
the amount of time it took me to solve either the prox with the dynamic programming algorithm or to
perform a single banded matrix solve. Since banded matrix solve corresponds to one iteration of interior
point method, we’re comparing the one iteration of interior point method vs. one evaluation of prox with
dynamic progamming. They’re both linear, but you can see that constant scaling is more favorable towards
the dynamic programming. There’s no reason why you should go to ineterior point method especially after

you have these preliminary analysis. Also, it goes to prox directly with no worries about how accurate you
are.

20.4.3 Convergence Behavior Comparison

Now we know dynamic programming is faster than interior point method, but it’s even more interesting to
compare convergence behavior of the two as A varies, where ) is a regularization parameter determining the
strength of regularization.
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Figure 20.4: Convergence behavior comparison of dynamic programming and interior point method

If we solve the sequence of problems across of the the varying A, we would find that the primal approach solve
this prox directly quite well when lambda is large and it has increasingly more trouble when A gets small.
You can see the comparison in Figure 20.4. In this case it’s solving a logistic problem without predictors and
using primal proximal gradient given by dynamic programming algorithm across the greater A’s. The x-axis
is the X value, and the y-axis number of proximal operations needed to get an accuracy of certain amount,
let’s say 10~5. The algorithm quits at 1000 iterations. So as A gets smaller, the problem gets harder. We
need more proximal operations to get an accurate solution. The difference between red and black is not so
important so you can ignore this for now.

In the dual, the general trend is not as definite as in primal but we see that it does get easier as A\ gets
smaller. It’s not easy to compare the two because they’re not in the same scale, but let’s think about drawing
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a line at 100. If we use the primal approach and we solve the prox with the dynamic programming then
number of prox to converge is very small for A = 0.1 or higher. However, dual method might start winning
beyond that. We can see that primal is better for a large lambda and dual is good for small A.

To intuitively explain why this is the case, if you look at the primal and dual problem, the sparsity pattern
is reversed between the two. In the primal, when lambda is large, there are many components that are
zero, whereas for a large lambda in the dual, there are many components that are strictly inside the box.
For small lambda, many components are nonzero in the primal and DS gets denser and denser but in the
dual, the box gets tighter and tighter which makes more components of the dual solution to lie on the
boundary. In a very rough sense, when many of components are zero, there are fewer effective parameters
in the primal. It iterates over only nonzero components, so effectively it’s solving optimization problem in a
smaller dimension. in the dual, it’s the similar story except for now the important notion is whether they are
on the boundary or not. When the X value is samll, many components are on the boundary so the algorithm
iterates over the fewer and fewer number of points. This is a very handy way of explaining but there is a
more refined analysis you can show that this is actually true in terms of convergence rates. So the the point
to keep in mind is that the large A is easier for primal and the small X is easier for dual algorithm because
they have opposite notion of sparsity.

Another thing to keep in mind is that in the previous example, it seems like dual is winning when A is smaller
than 0.1, but it might not be interesting to use such small \.
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Figure 20.5: Red: A = 0.01, Blue: A = 15, Dotted black: true underlying mean

Figure 20.6 shows that when A = 0.01, the optimization result is crazily under-regularized which is not
interesting in any point of view.

20.5 Big Dense Matrix D

Our last example is a big dense D matrix. In this case, primal proximal approaxh is intractable, and dual
is also expensive because of an expensive newton step. Solving linear systems with a dense matrix is much
more expensive than one in a structured matrix. So in this case, dual proximal gradient is a good option.
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min f*(=DTw)
u (20.14)
subject to  ||ulloo < A

As you can see in the equation ( 20.14), it is projecting the smooth part onto the box. Hence the gradient
of this is just given by

—D <7 f*(=D"u). (20.15)

This is possible to calculate even when D is dense. It just requires matrix multiplications. Steps of proximal
gradient is just adding ¢ times this quantity and it projects onto a box.

u+tD <y f*(=DTu). (20.16)

project onto the box. D appears only when calcuating the gradient. Here, we don’t have to solve any linear
equation involving D, but D appears only when we are caculating the gradient, so compared to others, this
method is very efficient. It is still going to suffer from an issue needing many iterations to converge to the
high accuracy, but it seems like a only feasible approach in this case.

The last twist of it is when D is not only dense but is also so big that you couldn’t fit it into the memory. You
can’t fit D into a memory for the matrix multiplication needed in equation ( 20.16).Now primal subgradient
method is starting to look like a winner. Recall the subgradient calculation,

9="F(B)+A\Y_sign((DB),) - Di (20.17)

€S

where S = {i|(Dp); # 0}. It only needs nonzero elements of D3, se can just keep a list of which components
of D3 is nonzero and only load them to the memory.

For such a big problem that we can’t fit into the memory, primal subgradient method might be the best
method. Even better way would be using something stochastic. You can calcuate the gradient <7f(5)
stochastically and also the subgradient. This is a practical method that people use for really massive
problems.

We’ve gone through many situations where each algorithm may appear most favorable or a combination
of algorithms may appear more favorable so that you can get a sense for an idea that no one algorithm
dominates the other.

20.6 Takeaway Points

We looked in to a generalized lasso problem to go through these points but these ideas are generally applicable
to any kind of problem.

e There is no single best method

The performance gonna depend structure of penalty, or the regularizor you’re using. if you're going to
the dual it depends on the conjugate of the loss, is that possible to derive? depends on what accuracy
level you want, depends on the sought regularization level - A.
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e Duality is your friend

You should always derive the dual even if you’re confident how to solve the problem in the primal. It’s
never going to hurt. Just derive the dual and see what you can get out of it. What does the dual do?
It takes the linear transformations of the one part of the criterion function and moves a non-smooth
regularizor into the smooth criterion function. The dual also offers success in different reg regimes at
different levels of regularization parameters because of that high-level reasoning i gave before.

e Regressors complicate duality

Again, this is a persistent point. It does not have to do with just generalized lasso, but always true.
Regressors are linear transformations in the smooth part of the loss and the dual moves them to the
non-smooth part of the loss. we have a loss + regularizor and that’s gonna complicate the role played
by the non-smooth part in the dual. One way to get around this is to use proximal gradient in the
primal and that will completely relive yourself of dealing with problems involving X, because you're
taking the primal problem and you're approximating the smooth part by quadratic that does not
involve X at all. That’s a generic strategy to reduce the problem with the regressors to one without
regressors.

e Recognize the easy sub-problems

If there’s something that is a special case of your problem, you can recognize the easy subproblem to
solve and design the algorithm around it. That’s what we in 1d fused lasso where we recognized that
prox was really quite simple - dynamic programming over a line - and we designed the algorithm around
that. We decided to use proximal gradient because the prox was so efficient. This is also important
for ADMM which we will learn later.

e Limited memory at scale

At scale, memory limitation problem becomes very serious so the active set/stochastic methods may
be the only option you have. If you have a really large problem, method that deal with active sets and
evaluate gradients and subgradients stochastically will work. We didn’t stress this point at all in this
class because it is more system-side work, but stil very important point to keep in mind.

e You dont have to find/design the perfect optimization algorithm

As we go forward and learn more advance methods like ADMM, our toolbox will get bigger. All of
them will be a viable option and may even be a better option than what we learned today depending
on the situations. Finding the optimal algorithm among them may be interesting but it is very hard to
exhaustively examine all the methods we learned. Just find the one that works well is really the point.
Especially when you don’t care about the performance at all and you just wanna do some prototyping,
you can just use convex programming package such as cvx and tfocs.

20.7 Implementation

Now we want to focus on implementation which we didn’t focus on at all. It’s mostly engineering concern,
but implementation skills are really under-valued. Here are some ideas to keep in the back of your head if
you’re implementing an algorithm like the ones we talked about today.

e Speed

It’s obviously an important point and we’ve been focused on this a lot so far.

e Robustness
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Robustness refers to the stability over the various cases. For example, let’s consider a fused lasso over
the graphs where graphs can have the edge weights. Robustness refers to the idea how well it performs
if some weights are huge and some are tiny.

e Simplicity

These are rules of thumbs. A constant-factor speedup is probably not worth a much more complicated
implementation. If it makes much more complicated code and gives you two times speed up, it’s not
worth it. It may be worth a loss of simplicity if you are able to make an implementation to converge
to a higher degree of accuracy quickly, say 1/k to 1/k? or c*.

e Portability

Portability refers to the idea of how well it can be ported to different problems or different languages.
Writing a code in a lower level language like C is a good practice especially when you consider portability.
Almost every language can take the code written in C and be wrapped around in like R, MATLAB, Python.

My last tip on the implementation is DO NOT re-implement standard routines. You don’t have to reinvent
the wheel every time you solve the optimization problem. This is especially true for numerical algebra. When
i was a graduate student, i spent way too long time implementing updates for QR decomposition. When i
look back, I wish somebody had told me don’t do that. There’s a tons of open-source free resources for the
numerical algebra. Reimplementing things on your own makes you prone to bugs and it makes much harder
to port to other languages and just not worth your time. You should always be looking at where you can
find the high quality implementations of standard routines.
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