
10-725/36-725: Convex Optimization Spring 2015

Lecture 24: April 13
Lecturer: Ryan Tibshirani Scribes: Calvin McCarter, Anurag Kumar, Logan Brooks

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

24.1 Administrative Notes

Today: finish up Frank-Wolfe.

Next week, have option of doing one/two advanced topics.

Options:

• exact path-following methods (scattered votes)

• nonconvex (many votes)

– not going to give general algorithms

• fast stochastic algorithms (a few votes)

24.2 Finishing up Frank-Wolfe / conditional gradient method

We thought of Frank-Wolfe as a method like projected gradient descent; it addresses problems where we
optimize some smooth convex function f(x) subject to x is in some constraint set C.

• Projected gradient descent: forms quadratic approximation to f , minimizes, projects onto C;

• Frank-Wolfe: uses linear approximation, optimizes within C rather than projecting.

For each step of Frank-Wolfe:

1. Consider a first-order approximation of f at x(k−1): g(s) = f(x(k−1)) +∇f(x(k−1))T (s− x(k−1)).

2. Find a constrained minimizer s(k−1) ∈ arg mins∈C g(s) = arg mins∈C ∇f(x(k−1))T s (the equality holds
because f(x(k−1)) and ∇f(x(k−1)) are constant wrt s).

3. Let x(k) = (1 − γk)x(k−1) + γks
(k−1), a convex combination of x(k−1) and s(k−1), or, equivalently, let

x(k) = x(k−1) + γk(s(k−1) − x(k−1)), a step towards s(k−1) from x(k−1).

4. Let γk above be a step size; the default choice for fixed γk’s is γk = 2
(k+1) ; we can also choose them

with backtracking line search.

24-1

24-2 Lecture 24: April 13

How do we find s above when C is a norm ball?

• Find a subgradient of the dual norm, scale: arg min‖s‖≤t∇f(x(k−1))T s = −t · ∂
∥∥∇f(x(k−1))

∥∥
∗

• Finding this subgradient is often cheaper than projecting onto the norm ball.

Some examples of Frank-Wolfe update for regularization

• L1 regularization: Problems of the form maxx f(x) subject to ‖x‖1 ≤ t. The update rules in this case
are simply

ik−1 ∈ arg max
i=1,..p

∣∣∇if(xk−1)
∣∣

x(k) = (1− γk)x(k−1) − γkt · sign(∇ik−1
f(x(k − 1))) · eik−1

• Lp regularization: Problems of form maxx f(x) subject to ‖x‖p ≤ t for 1 ≤ p ≤ ∞, we have. In this
case we can choose

s
(k−1)
i = −α · sign(∇fi(x(k−1))) ·

∣∣∣∇fi(x(k−1))∣∣∣p/q , i = 1, ...n

where α is a constant such that
∥∥s(k − 1)

∥∥
q

= t, after which usual Frank-Wolfe update follows. This

is in general much simpler than projection onto lp ball.

• Trace norm regularization: Problems of form minX f(X) subject to ‖X‖tr ≤ t. We can choose

S(k−1) = −t · uvT

where u, v are leading left, right singular vectors of ∇f(Xk−1). Projection onto the trace norm ball
requires SVD and prox also requires SVD. Frank-Wolfe updates are subgradient of operator norm and
are much cheaper to do. Calculating the SVD gives us the leading left and right singular vectors of
∇f(X(k−1)), which is what Frank-Wolfe needs, but also all of the rest; it is much harder to do.

24.2.1 Constrained and Lagrange forms

We are often solving for many values of the regularization tuning parameter:

• t in constrained form, or

• λ in penalized form.

The problem are equivalent and often we just choose the one which is easier to solve. So We should compare
Frank-Wolfe with

• projected gradient descent, projecting onto C, using the constrained form, or

• proximal gradient descent, using the penalized form,

and choose the easiest method.

Summary:

Lecture 24: April 13 24-3

• L1 norm: Frank-Wolfe and projection both O(n); don’t really gain much with Frank-Wolfe

• Lp norm (p ≥ 1): Frank-Wolfe is still O(n), and we have an explicit formula for its updates; projection
and prox are not generally directly computable

• Trace norm: projection and prox are much more expensive than Frank-Wolfe updates

• Many other regularizers, e.g., special polyhedra or cone constraints, sum-of-norms (group-based) reg-
ularization, and atomic norms: yield efficient Frank-Wolfe updates; see [Jaggi, 2013].

Good question from Sami: quadratic programming: fairly easy and closed form with Frank-Wolfe, that
requires inverse of Q; efficiency depends on if Q is structured.

24.2.2 The limitations of Frank-Wolfe

Frank-Wolfe appears to have the same convergence rate as projected gradient (O(1/ε) rate) in theory;
however, in practice, even in cases where each iteration is much cheaper computationally, it can be slower
than first-order methods to converge to high accuracy.

Two things to note:

• The Frank-Wolfe method is not a descent method.

• Frank-Wolfe has a hard time getting to the high-accuracy regime.

24.2.3 Frank-Wolfe Duality Gap

The Frank-Wolfe iterates admits a very natural duality gap; this fact was featured very prominently in
Martin Jaggi’s PhD thesis [Jaggi, 2011], although it may have been known earlier.

Recall that each Frank-Wolfe step finds a minimizer

s(k−1) ∈ arg min
s∈C

f(x(k−1)) +∇f(x(k−1))T (s− x(k−1)) = − arg max
s∈C

∇f(x(k−1))T (x(k−1) − s);

just the max here is a (bound on the) duality gap, as well as a (bound on the) suboptimality gap:

f(x(k−1))− f∗ ≤ max
s∈C
∇f(x(k−1))T (x(k−1) − s),

where f∗ is the optimal value for the primal problem; this is an upper bound on the primal suboptimality.

Proof:

f(s) ≥ f(x(k−1)) +∇f(x(k−1))T (s− x(k−1)) (applying first-order condition for convexity)

f∗ = min
s∈C

f(s) ≥ f(x(k−1)) + min
s∈C
∇f(x(k−1))T (s− x(k−1)) (minimizing both sides over s ∈ C)

f(x(k−1))− f∗ ≤ max
s∈C
∇f(x(k−1))T (x(k−1) − s) (rearranging).

Why is this called a duality gap? Let f∗ now be the convex conjugate of f , p∗ the primal optimal value,
and d∗ the dual optimal value. Rewrite the original problem in the unconstrained form

min
x
f(x) + IC(x),

24-4 Lecture 24: April 13

where

IC(x) =

{
0, x ∈ C
∞, x /∈ C

is the convex 0/∞ indicator function of C; the dual (immediately via Fenchel’s duality theorem) is

max
u
−f∗(u)− I∗C(−u),

where the conjugate of the indicator function is the support function of C,

I∗C(u) = max
s∈C

sTu.

The “iterate” duality gap for any primal feasible x and any u is

idg(x, u) = [f(x) + IC(x)︸ ︷︷ ︸
=0

]− [−f∗(u)− I∗C(−u)] = f(x) + f∗(u) + I∗C(−u)

≥ xTu+ I∗C(−u) (Fenchel’s inequality).

Substituting x = x(k−1) (which is primal feasible), u = ∇f(x(k−1)), this gives

idg(x(k−1),∇f(x(k−1))) ≥ (x(k−1))T∇f(x(k−1)) + max
s∈C

sT (−∇f(x(k−1))) (sub. in x, u, I∗C)

= max
s∈C
∇f(x(k−1))T (x(k−1) − s);

this is a lower bound on the iterate duality gap.

Recall the relationship

idg(x, u) = f(x)− f∗(u) = (f(x)− p∗) + (p∗ − d∗) + (d∗ − f∗(u)) ≥ f(x)− p∗ = primal suboptimality.

We can use the bounds above on the primal suboptimality gap and the duality gap to devise a stopping rule
(stop when the primal suboptimality gap is small).

24.2.4 Convergence analysis

Part of the proof of the result is in the slides; for the rest, see the referenced papers. The Bregman divergence
of a continuously differentiable, convex function f on a closed (convex) domain associated with points y and
x is the difference between the function’s value at y and the first-order Taylor approximation at y when
expanding at x [Wikipedia, 2015a]:

Df (y, x) = f(y)− f(x)−∇f(x)T (y − x) ≥ 0;

where the inequality comes from the first-order conditions for convexity. How far a function departs from its
first-order approximations can be interpreted as a measure of its curvature, which motivates the following
definition.

The curvature constant of a convex function f is

M = max
x,s,y∈C

y=(1−γ)x+γs
γ∈[0,1]

2

γ2
(
f(y)− f(x)−∇f(x)T (y − x)

)︸ ︷︷ ︸
Df (y,x)

;

the 2
γ2 factor is designed to make things work out in the proof.

Lecture 24: April 13 24-5

Theorem 24.1 Conditional gradient method using step sizes γk = 2/(k + 1), k = 1, 2, 3... satisfies

f(x(k))− f∗ ≤ 2M

k + 2
(24.1)

Clearly, the convergence rate matches that of projected gradient descent with Lipschitz gradient. But its
worth checking how the assumption of bounded curvature compare with the Lipschitz gradient assumption.

Claim: If ∇f is Lipschitz with constant L then M ≤ diam2(C) · L where diam(C) = maxx,s∈C ‖x− s‖2.
This is easily seen through

f(y)− f(x)−∇f(x)T (y − x) ≤ L

2
‖y − x‖22

Maximizing over all y = (1− γ)x+ γs and multiplying by 2/γ2, we get

M ≤ max
x,s,y∈C

y=(1−γ)x+γs

2

γ2
L

2
‖y − x‖22 = max

x,s∈C
L ‖x− s‖22

This shows that the assumptions are no stronger than for proximal gradient method. The paper gives an
even strong result regarding the suboptimality/duality gap and termination within a certain number of steps.

Please see these scribe notes, which cover the rest of the Frank-Wolfe-related content of this lecture (as well
as what is included above).

24.3 Proximal and Projected Newton

24.3.1 Motivation: proximal gradient descent

The proximal gradient descent operates on problems of the form

min
x
f(x) = min

x
g(x) + h(x)

where g is convex and smooth, while h is convex and non-smooth. The key to this approach is that h is
“simple”, so that the proximal operator for h

proxt(·) = arg min
z

1

2t
‖x− z‖22 + h(z)

can be applied efficiently. For proximal gradient descent, the updates take the form

x(k) = proxtk(x(k−1) − tk∇g(x(k−1))),

so ∇g must be computable, but the proximal operator only depends on h. Proximal gradient descent also has
the same convergence rate as gradient descent has for smooth objectives, so it is applicable for optimization
problems when prox is efficient (e.g. when h is separable).

Proximal gradient is motivated by the idea that we can iteratively take the quadratic expansion of g, plus
original h, rather than the quadratic expansion of g + h. Each update takes the form:

x+ = arg min
z

1

2t
‖x− t∇g(x)− z‖22 + h(z) (24.2)

= arg min
z
∇g(x)T (z − x) +

1

2t
‖z − x‖22 + h(z), (24.3)

http://www.stat.cmu.edu/~ryantibs/convexopt/scribes/23-cond-grad-scribed.pdf

24-6 Lecture 24: April 13

where the quadratic approximation uses the scaled identity 1
t I matrix as the Hessian.

Proximal Newton applies a similar technique to Newton’s method. In Newton’s method the quadratic
approximation uses the local Hessian of the objective, rather than 1

t I as in gradient descent. Thus, the
proximal Newton method replaces 1

t I in Equation 24.3 with ∇2g(x).

24.3.2 Proximal Newton method

To derive the proximal Newton method, we define the “scaled proximal mapping” proxH(x) as follows:

proxH(x) = arg min
z

1

2
‖x− z‖2H + h(z)

where ‖x‖2H = xTHx defines a norm, given a matrix H � 0. The scaled proximal mapping coincides with
the previous definition when H = 1

t I.

Then, with initial x(0), we repeat the following updates for k = 1, 2, 3, . . . :

y(k) =proxHk−1

(
x(k−1) −H−1k−1∇g(x(k−1))

)
x(k) =x(k−1) + tk(y(k) − x(k−1)).

Here we use Hk−1 = ∇2g(x(k−1)), the local Hessian of the smooth portion of the objective. As in the usual
Newton’s method, tk is a step size, chosen via backtracking line search.

We can verify that y minimizes a quadratic approximation of g, plus h:

y = arg min
z

1

2
‖x−H−1∇g(x)− z‖2H + h(z) (24.4)

= arg min
z
∇g(x)T (z − x)

1

2
(z − x)TH(z − x) + h(z). (24.5)

The usual Newton update rule is a special case of proximal Newton with h(z) = 0. For H � 0, the scaled
proximal map proxH(·) still has many of the properties of proximal map [Lee et al., 2012]. For example, the
minimizer of 24.5 is unique, so the operator is well-defined.

There is one major difference between proximal Newton and proximal gradient. With proximal gradient, the
gradient of g must be computable, but it does not affect the difficulty of computing the prox. With proximal
Newton, the difficulty of computing the prox in Equation 24.5 does depend on the smooth component g
through its local Hessian H = ∇2g(x). Thus, the efficiency of proximal Newton depends on whether the
Hessian H contains structure that can be exploited.

24.3.3 Backtracking line search

Just as Newton’s method for smooth problems is not guaranteed to converge if we use full step sizes tk =
1, k = 1, 2, 3, . . . , proximal Newton requires us to compute step sizes to ensure convergence. Typically,
backtracking line search is used. As usual, we have parameters 0 < α ≤ 1/2 for sufficient decrease condition
and backtracking parameter 0 < β < 1. We define

v = proxH
(
x−H−1∇g(x)

)
− x

Lecture 24: April 13 24-7

as the proximal Newton direction at a given iteration. Starting with full step size t = 1, we shrink t ← βt
until we have sufficient decrease

f(x+ tv) ≤ f(x) + αt∇g(x)T v + α (h(x+ tv)− h(x)) .

This scheme is actually different than the backtracking scheme for proximal gradient descent. Recall that
backtracking line search had sufficient decrease condition

g(x− tGt(x)) ≤ g(x)− t∇g(x)TGt(x) +
t

2
‖Gt(x)‖22

where for each step size t we must re-compute

Gt(x) =
x− proxt (x− t∇g(x))

t
.

The backtracking scheme for proximal Newton avoids computing the prox at each inner backtracking itera-
tion, because doing so is typically much more expensive.

24.3.4 Does this even make sense?

We can write down the proximal Newton, and think that it has analogous properties to proximal gradient,
but does it make sense to use? Our motivation for proximal gradient is that we took a problem of the form

min
x
g(x) + h(x)

and replaced it with a sequence of problems where g is replaced by the quadratic approximation g(x(k−1)) +
1

2tk

∥∥x− (x(k−1) − tk∇g(x(k−1)))
∥∥2
2
, which has the same minimizers as

min
x

1

2tk
‖x− bk‖22 + h(x) = proxh,tk(bk)

(where bk = x(k−1) − tk∇g(x(k−1))). Presuming that the prox operator is cheap, we’re happy to do it over
and over again, iteratively, and will get the minimizer for the original problem.

Proximal Newton is doing the same thing, but we’re replacing g(x) with

g(x(k−1)) + bTk (x− x(k−1)) + (x− x(k−1))TAk(x− x(k−1)),
so it’s not a simple least-squares quadratic, but a general quadratic; why should we think that solving this
general-quadratic prox problem is any easier than solving the original problem? It may be the case that it
isn’t, and using proximal Newton doesn’t make any sense. In general, this prox problem can be very hard to
solve, which seemingly defeats the spirit of proximal gradient, because the subproblem is not easy to solve.

This is all true; nothing was misleading in the above discussion. For example, if suppose h(x) = ‖x‖1; then
each subproblem is solving a full lasso problem with the design matrix Ak, which requires another algorithm
(e.g., proximal gradient, coordinate descent) to solve. What we’re going to hope for is that we’ll get a
convergence rate like Newton, so that even though we have to solve this hard prox, we only have to solve
it a few times before getting to a highly accurate solution. If proximal Newton had the same convergence
properties as proximal gradient, we’d be in a lot of trouble, because we’ve made the prox problem super
hard, and need a lot of them. Under broad conditions, though, we do get that proximal Newton has the
same convergence rate as Newton in terms of the number of iterations, as we would hope. So while proximal
Newton has a lot of similarities with proximal gradient, it is in a different regime: we solve a much harder
prox problem, but only a few times.

We rely on having a good algorithm for the inner prox problem; we would never use it if this was not the
case. Proximal Newton should not be applied without care. Some well-known examples using prox Newton
include glmnet and QUIC (see subsection 24.3.7).

24-8 Lecture 24: April 13

24.3.5 Convergence analysis

Proximal Newton attains a O(log log(1/ε)) (quadratic) local convergence rate in terms of the number of outer
iterations, which is the same as Newton’s method, under the same assumptions as were taken for Newton’s
method (the original analysis, not the self-concordant analysis) [Lee et al., 2012]:

• f = g + h, g, h convex, g twice smooth

• mI � ∇g � LI, ∇2g Lipschitz with parameter M

• proxH(·) is exactly evaluable.

Note that each outer iteration involves a scaled prox evaluation!

Theorem 24.2 Proximal Newton method convergence: Proximal Newton with backtracking line search
converges globally, and for all k ≥ k0:∥∥∥x(k) − x∗∥∥∥

2
≤ M

2m

∥∥∥x(k−1) − x∗∥∥∥2
2

(local quadratic convergence).

Proof sketch:

• Global convergence: the backtracking condition is satisfied by t ≤ min
{

1, 2mL (1− α)
}

, so updates
converge to zero, which can only happen at the global minimum.

• Local quadratic convergence rate: the pure step t = 1 eventually satisfies the backtracking exit con-
dition; show ‖x+ − x∗‖ ≤ M

2m ‖x− x
∗‖22 by relating to the quadratic norm associated with H and

expanding x+.

24.3.6 Inexact prox evaluations

Unlike proximal gradient, prox evaluations in proximal Newton will almost always be inexact, because the
subproblem we’re solving generally doesn’t have a direct form for the solution, and requires running an
optimization algorithm (producing approximate results).

See [Lee et al., 2012] for an analysis of an adaptive stopping criteria for the graphical lasso problem, which
carefully quits the inner optimizer when a sufficient level of accuracy is achieved; the practical convergence
rate of the adaptive stopping rule and the “stop-when-extremely-accurate rule” are essentially the same in
terms of outer iterations, but the adaptive rule is much faster in terms of actual time taken. (See the slides
for some figures showing performance comparisons of different methods for logistic lasso regression.)

The adaptive criterion above stops when
∥∥∥Gf̃k−1/M

(z)
∥∥∥
2
≤ ηk

∥∥Gf/M (x(k−1))
∥∥
2

for a specific sequence

(ηk)k∈N1
which is proven to give a local superlinear rate. Here, G denotes generalized gradients and f̃ is

a quadratic approximation of f ; note the relation to the non-prox Newton method inner-problem stopping
rule ‖∇g̃k−1(z)‖2 ≤ ηk

∥∥∇g(x(k−1))
∥∥
2
.

Lecture 24: April 13 24-9

24.3.7 Usage

Proximal Newton methods are very commonly used in practice when we have very good algorithms for
solving the inner prox problems. For example, coordinate descent is a very good algorithm for solving the
lasso problem with Gaussian regression loss. However, with logistic regression loss, we cannot write down
the coordinate descent updates exactly (we cannot minimize along each coordinate exactly), and are stuck,
even though we love all the tricks about coordinate descent.

What we can do, though, and what’s done in glmnet and other implementations, is make a quadratic
approximation to the logistic regression loss that uses the Hessian; each inner subproblem is then a fully
dense lasso problem. We solve each inner subproblem with coordinate descent, because coordinate descent
is our hammer, and it works well. Even though this inner solver is pretty expensive, it’s a good algorithm
for that problem, and produces high-accuracy solutions. If done properly, the whole algorithm will converge
within 5–10 iterations, if we’re lucky, and has a Newton-like convergence once the iterates are in the right
region.

The above approach is used by the R package glmnet [Friedman et al., 2010] for L1-penalized generalized
linear models. In fact, the authors of the package are so confident in proximal Newton that they don’t even
use backtracking line search, instead relying on unit steps, which is pretty surprising, but works pretty well.

The quadratic approximation method above is also used in the R package QUIC (QUadratic Inverse Covari-
ance) [Hsieh et al., 2011] for estimating large graphical models (graphical lasso).

24.3.8 Proximal quasi-Newton methods

Proximal quasi-Newton methods avoid exactly forming the Hessian Hk−1 = ∇g(x(k−1)) at each step; this
can be helpful not only when computing the Hessian is expensive (in general, computing the Hessian in
large problems is prohibitively expensive), but also when it is ill-conditioned (singular or close to singu-
lar). See [Lee et al., 2012] (BFGS-type [Wikipedia, 2015b] updates) and [Tseng and Yun, 2009] (blockwise
Hessian approximations for smooth + block separable problems) for examples.

24.3.9 Projected Newton

We know that projected gradient method is a special case of proximal methods. Specifically, the problem is
min
x

g(x) subject to x ∈ C where C is convex set. To solve this using proximal methods we simply define

the indicator function IC(x) for the given convex set and then use this functions as the prox function. The
proximal gradient method simply becomes projected gradient method where in each iteration the point is
projected on the set C. So do we have a simple projected Newton’s method as well ? The updates in this
case looks like

y = arg min
z∈C

1

2

∥∥x−H−1∇g(x)− z
∥∥2
H

= arg min
z∈C

∇g(x)T (z − x) +
1

2
(z − x)TH(z − x)

For H = I this is simply a projection of x−∇g(x) onto C but not in general. So projected newton does not
follow directly from proximal newton method. However, there are special cases where it is easy to perform
projected newton. One such case is box constraints problems. Box constraints appear in several problems

24-10 Lecture 24: April 13

such as Nonnegative least squares, Nonnegative KL divergence minimization, support vector machine dual,
dual of l1 penalized problems.

A box constraint problem is simply min
x

g(x) subject to l ≤ x ≤ u. The projected newton method for this

problem takes the following approach

• Define the sets

Bk−1 ={i : x
(k−1)
i ≤ li + ε and ∇ig(x(k − 1)) > 0} ∪ {i : x

(k−1)
i ≥ ui − ε and ∇ig(x(k−1)) < 0}

Fk−1 ={1, ...n} \Bk−1

Here Bk−1 is called the binding set and Fk−1 is called free set.

• Now consider the submatrix of inverse Hessian along the free variables

Sk−1 = [(∇2g(x(k−1)))−1]Fk−1

• Newton step along free variables only

x(k) = P[l,u]

(
xk−1 − tk

[
Sk−1 0

0 I

] [
∇Fk−1

g(x(k−1)

∇Bk−1
g(x(k−1))

])
P[l,u] is the projection onto [l, u] = [l1, u1]×[ln, un]

Quasi-Newton can also be done here. Thus instead of actual hessian (∇2g(x(k−1)))−1 in Sk−1 one can use
an iterative approximation. Some references for the projected newton method are given the last slide.

References

[Friedman et al., 2010] Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for gener-
alized linear models via coordinate descent. Journal of statistical software, 33(1):1.

[Hsieh et al., 2011] Hsieh, C.-J., Sustik, M. A., Dhillon, I. S., and Ravikumar, P. K. (2011). Sparse inverse
covariance matrix estimation using quadratic approximation. In Shawe-Taylor, J., Zemel, R., Bartlett, P.,
Pereira, F., and Weinberger, K., editors, Advances in Neural Information Processing Systems 24, pages
2330–2338.

[Jaggi, 2011] Jaggi, M. (2011). Sparse convex optimization methods for machine learning. PhD thesis, ETH
Zürich.

[Jaggi, 2013] Jaggi, M. (2013). Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In
Proceedings of the 30th International Conference on Machine Learning (ICML-13), pages 427–435.

[Lee et al., 2012] Lee, J., Sun, Y., and Saunders, M. (2012). Proximal newton-type methods for convex
optimization. In Advances in Neural Information Processing Systems, pages 836–844.

[Tseng and Yun, 2009] Tseng, P. and Yun, S. (2009). A coordinate gradient descent method for nonsmooth
separable minimization. Mathematical Programming, 117(1-2):387–423.

[Wikipedia, 2015a] Wikipedia (2015a). Bregman divergence — wikipedia, the free encyclopedia. [Online;
accessed 1-May-2015].

[Wikipedia, 2015b] Wikipedia (2015b). Broydenfletchergoldfarbshanno algorithm — wikipedia, the free en-
cyclopedia. [Online; accessed 1-May-2015].

	Administrative Notes
	Finishing up Frank-Wolfe / conditional gradient method
	Constrained and Lagrange forms
	The limitations of Frank-Wolfe
	Frank-Wolfe Duality Gap
	Convergence analysis

	Proximal and Projected Newton
	Motivation: proximal gradient descent
	Proximal Newton method
	Backtracking line search
	Does this even make sense?
	Convergence analysis
	Inexact prox evaluations
	Usage
	Proximal quasi-Newton methods
	Projected Newton

