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25.1 Introduction

Consider a problem that minimize a finite sum:

min
w
F (w) =

1

n

n∑
i=1

fi(w) +
λ

2
‖w‖2 (25.1)

Assume fi’s are differentiable and convex. The objective is strongly convex because of the regularizer λ
2 ‖w‖

2.
Further assume that ∇f is L-lipschitz.

Question: What are some existing methods that solve this problem?

Answer: gradient descent, newton’s method, stochastic gradient descent, etc.

25.2 (Stochastic) Gradient Descent (GD/SGD)

Gradient descent will require a lot computation if N is huge. Stochastic gradient descent is an alternative if
N is huge. However, SGD has slower convergence rate. Though at each iteration, the SGD uses an unbiased
estimator of the gradient ∇F , it has extremely high variance. A variation based on this observation is to
use mini-batch SGD.

In the strongly convex case, SGD has a function error suboptimality of O(1/T ), and of O(1/
√
T ) in the

convex setting, where T is the time budget.

There are lower bounds that prove, in black box setting for convex optimization, the previously mentioned
rates for minimizing F is essentially optimal in T. So, are we done because we have matched the lower
bounds? Is it possible to get the best of both gradient descent and SGD? I.e. good convergence rate and
efficient computation?

25.3 The suboptimality of SGD for minimizing finite sums

A paper published in 2012 proposed an algorithm SAG that beats the black box stochastic gradient methods.
It has O(1/T ) rates for convex functions, and O(ρT ) rates for strongly convex functions for some ρ < 1.

The key insights that help them get around the black box lower bounds are the following:
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1. The objective function we are minimizing is a finite sum. Since we know more about the objective
function, we can have better bounds than the black box analysis.

2. We are restricted in choosing the stochastic gradient as ∇fi(wi), we can choose any gi as long as
Egt = ∇F (wt).

3. Also, we can have unbiased gradients, as long as the biases are tolerable in some sense. In fact, the
SAG updates are biased.

There is a trade-off between bias and variance when choosing the stochastic gradient. We are more interested
in reduce the variance here, since it’s the variance that hurts the convergence rates!

25.4 SDCA, SVRG, SAG, SAGA, etc

SDCA: stochastic dual coordinate ascent
SVRG: stochastic variance-reduced gradient
SAG: stochastic average gradient
SAGA: stochastic averaged gradient (another version)

The above are the most relevant work in stochastic gradient descent. The paper can be easily found using
Google. The SAGA paper has a comprehensive related work section that puts things together.

We will focus on an example using SDCA algorithm. The objective function is

min
w
F (w) =

1

n

n∑
i=1

fi(w) +
λ

2
‖w‖2 (25.2)

where fi is convex with L-smooth gradients. Note that at optimality,

w∗ = − 1

λn

n∑
i=1

∇fi(w∗) (25.3)

and what we will do is maintain ”dual vectors” α1, . . . , αn such that

w(t) =
1

λn

n∑
i=1

α
(t)
i (25.4)

The SDCA algorithm will make w(t) → w∗ and simultaneously α
(t)
i → −∇fi(w∗) =: α∗i .

We initialize there dual vectors arbitrarily, and then at each time step, we uniform randomly pick an index
from 1 to n, and perform

α
(t)
i = α

(t−1)
i − ηλn(∇fi(w(t−1)) + α

(t−1)
i ) (25.5)

where the step size η < 1/λn.

And correspondingly,

w(t) = w(t−1) − η(∇fi(w(t−1)) + α
(t−1)
i ) := w(t−1) − ηgt (25.6)

The algorithm is simple and straightforward.
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We will check that SDCA has unbiased graident:

Egt =
1

n

n∑
i=1

∇fi(w(t−1)) +
1

n

n∑
i=1

α
(t−1)
i = ∇F (w(t−1))

This is because we always maintain w(t−1) = 1
λn

∑n
i=1 α

t−1
i .

We’ve checked that SDCA is unbiased, does it also have lower variance than SGD? It’s provable that the
variance goes to zero.

Proof:

E‖gt‖2 = E‖∇fi(w(t−1)) + α∗i − α∗i + α
(t−1)
i ‖2

≤ 2E‖∇fi(w(t−1)) + α∗i ‖2 + 2E‖ − α∗i + α
(t−1)
i ‖2

Since α∗i = −∇fi(w∗), the first term ‖∇fi(w(t−1)) + α∗i ‖2 ≤ L‖w(t−1) − w∗‖2. There is a theorem that
implies that both the first term and second term go to zero. We only cite this technical theorem here.

Hence, the SDCA eventually behaves like GD, but starts like SGD.

25.5 Optimality of various methods

SDCA has much better convergence rate than naive stochastic algorithm and vanilla gradient descent. The
total complexity of SDCA is (Lλ + n)d log(1/ε), since each iteration takes time d. This is better than the

nLλ d log(1/ε) complexity of gradient descent.

Though this convergence rate is great, it is not provably optimal. There are many possibilities in this research
area:

• accelerated and proximal extension of the algorithm

• these algorithms may not be optimal in all ranges of the condition number

• maybe these algorithms are indeed optimal

• one may be able to prove tighter lower bounds


