
Homework 1

Convex Optimization 10-725

Due Friday September 13 at 11:59pm

Submit your work as a single PDF on Gradescope. Make sure to prepare your
solution to each problem on a separate page. (Gradescope will ask you select the

pages which contain the solution to each problem.)

Total: 66 points (+ 10 bonus points)

1 Convex sets (16 points)

(a, 12 pts) Closed sets and convex sets.

i. Show that a polyhedron {x ∈ Rn : Ax ≤ b}, for some A ∈ Rm×n, b ∈ Rm, is both convex and
closed.

ii. Show that if Si ⊆ Rn, i ∈ I is a collection of convex sets, then their intersection ∩i∈ISi is also
convex. Show that the same statement holds if we replace “convex” with “closed”.

iii. Given an example of a closed set in R2 whose convex hull is not closed.

iv. Let A ∈ Rm×n. Show that if S ⊆ Rm is convex then so is A−1(S) = {x ∈ Rn : Ax ∈ S}, which
is called the preimage of S under the map A : Rn → Rm. Show that the same statement holds if
we replace “convex” with “closed”.

v. Let A ∈ Rm×n. Show that if S ⊆ Rn is convex then so is A(S) = {Ax : x ∈ S}, called the image
of S under A.

vi. Give an example of a matrix A ∈ Rm×n and a set S ⊆ Rn that is closed and convex but such
that A(S) is not closed.

(b, 4 pts) Polyhedra.

i. Show that if P ⊆ Rn is a polyhedron, and A ∈ Rm×n, then A(P ) is a polyhedron. Hint: you
may use the fact that

P ⊆ Rm+n is a polyhedron ⇒ {x ∈ Rn : (x, y) ∈ P for some y ∈ Rm} is a polyhedron.

ii. Show that if Q ⊆ Rm is a polyhedron, and A ∈ Rm×n, then A−1(Q) is a polyhedron.
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2 Convex functions (14 points)

(a, 2 pts) Prove that the entropy function, defined as

f(x) = −
n∑
i=1

xi log(xi),

with dom(f) = {x ∈ Rn++ :
∑n
i=1 xi = 1}, is strictly concave.

(b, 4 pts) Let f be twice differentiable, with dom(f) convex. Prove that f is convex if and only if

(∇f(x)−∇f(y))T (x− y) ≥ 0,

for all x, y. This property is called monotonicity of the gradient ∇f .

(c, 2 pts) Give an example of a strictly convex function that does not attain its infimum.

(d, 3 pts) A function f : Rn → R is said to be coercive provided that f(x)→∞ as ‖x‖2 →∞. A key
fact about coercive functions is that they attain their infimums. Prove that a twice differentiable,
strongly convex function is coercive and hence attains its infimum. Hint: use Q3 part (b.iv).

(e, 3 pts) Prove that the maximum of a convex function over a bounded polyhedron must occur at
one of the vertices. Hint: you may use the fact that a bounded polyhedron can be represented as the
convex hull of its vertices.

3 Partial optimization with `2 penalties (10 bonus points)

Consider the problem

min
β, σ≥0

f(β) +
λ

2

n∑
i=1

g(βi, σi), (1)

for some convex f with domain Rn, λ ≥ 0, and

g(x, y) =


x2/y + y if y > 0

0 if x = 0, y = 0

∞ else.

In other words, the problem (1) is just the weighted `2 penalized problem

min
β, σ≥0

f(β) +
λ

2

n∑
i=1

(β2
i

σi
+ σi

)
,

but being careful to treat the ith term in the sum as zero when βi = σi = 0.

(a, 5 pts) Prove that g is convex. Hence argue that (1) is a convex problem. Note that this means we
can perform partial optimization in (1) and expect it to return another convex problem. Hint: use
the definition of convexity.

(b, 2 pts) Argue that miny≥0 g(x, y) = 2|x|.

(c, 3 pts) Argue that minimizing over σ ≥ 0 in (1) gives the `1 penalized problem

min
β

f(β) + λ‖β‖1.
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4 Lipschitz gradients and strong convexity (18 points)

Let f be convex and twice continuously differentiable.

(a, 10 pts) Show that the following statements are equivalent.

i. ∇f is Lipschitz with constant L;

ii. (∇f(x)−∇f(y))T (x− y) ≤ L‖x− y‖22 for all x, y;

iii. ∇2f(x) � LI for all x;

iv. f(y) ≤ f(x) +∇f(x)T (y − x) + L
2 ‖y − x‖

2
2 for all x, y.

Your solution should have 5 parts, where you prove i ⇒ ii, ii ⇒ iii, iii ⇒ iv, iv ⇒ ii, and iii ⇒ i.

(b, 8 pts) Show that the following statements are equivalent.

i. f is strongly convex with constant m;

ii. (∇f(x)−∇f(y))T (x− y) ≥ m‖x− y‖22 for all x, y;

iii. ∇2f(x) � mI for all x;

iv. f(y) ≥ f(x) +∇f(x)T (y − x) + m
2 ‖y − x‖

2
2 for all x, y.

Your solution should have 4 parts, where you prove i ⇒ ii, ii ⇒ iii, iii ⇒ iv, and iv ⇒ i.

5 Solving optimization problems with CVX (18 points)

CVX is a fantastic framework for disciplined convex programming: it’s rarely the fastest tool for the
job, but it’s widely applicable, and so it’s a great tool to be comfortable with. In this exercise we
will set up the CVX environment and solve a convex optimization problem.

Generally speaking, for homeworks in this class, your solution to programming-based problems
should include plots and whatever explanation necessary to answer the questions asked. In addition,
you full code should be submitted as an appendix to the homework document.

CVX variants are available for each of the major numerical programming languages. There are
some minor syntactic and functional differences between the variants but all provide essentially the
same functionality. Download the CVX variant of your choosing:

• Matlab: http://cvxr.com/cvx/

• Python: http://www.cvxpy.org/

• R: https://cvxr.rbind.io

• Julia: https://github.com/JuliaOpt/Convex.jl

and consult the documentation to understand the basic functionality. Make sure that you can solve
the least squares problem minβ ‖y − Xβ‖22 for an arbitrary vector y and matrix X. Check your
answer by comparing with the closed-form solution (XTX)−1XT y.

(a, 10 pts) Given labels y ∈ {−1, 1}n, and a feature matrix X ∈ Rn×p with rows x1, . . . xn, recall the
support vector machine (SVM) problem

min
β,β0,ξ

1

2
‖β‖22 + C

n∑
i=1

ξi

subject to ξi ≥ 0, i = 1, . . . n

yi(x
T
i β + β0) ≥ 1− ξi, i = 1, . . . n.
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i. Load the training data in xy train.csv. This is a matrix of n = 200 row and 3 columns. The
first two columns give the first p = 2 features, and the third column gives the labels. Using
CVX, solve the SVM problem with C = 1. Report the optimal crtierion value, and the optimal
coefficients β ∈ R2 and intercept β0 ∈ R.

ii. Recall that the SVM solution defines a hyperplane

β0 + βTx = 0,

which serves as the decision boundary for the SVM classifier. Plot the training data and color
the points from the two classes differently. Draw the decision boundary on top.

iii. Now define X̃ ∈ Rn×p to have rows x̃i = yixi, i = 1, . . . , n, and solve using CVX the problem

max
w

− 1

2
wT X̃X̃Tw + 1Tw

subject to 0 ≤ w ≤ C1, wT y = 0,

(Above, we use 1 to denote the vector of all 1s.) Report the optimal criterion value; it should
match that from part i. Also report X̃Tw at the optimal w; this should mach the optimal β
from part i. Note: this is not a coincidence, and is an example of duality, as we will study in
detail later in the course.

iv. Investigate many values of the cost parameter C = 2a, as a varies from −5 to 5. For each one,
solve the SVM problem, form the decision boundary, and calculate the misclassification error on
the test data in xy test.csv. Make a plot of misclassification error (y-axis) versus C (x-axis,
which you will probably want to put a log scale).

(b, 8 pts) Disciplined convex programming (DCP) is a system for composing functions while ensuring
their convexity. It is the language that underlies CVX. Essentially, each node in the parse tree for a
convex expression is tagged with attributes for curvature (convex, concave, affine, constant) and sign
(positive, negative) allowing for reasoning about the convexity of entire expressions. The website
http://dcp.stanford.edu/ provides visualization and analysis of simple expressions.

Typically, writing problems in the DCP form is natural, but in some cases manipulation is
required to construct expressions that satisfy the rules. For each set of mathematical expressions
below, first briefly explain why each defines a convex set. Then, give an equivalent DCP expression
along with a brief explanation of why the DCP expression is equivalent to the original for each
set. DCP expressions should be given in a form that passes analysis (a green tick on the left of
the expression box) at http://dcp.stanford.edu/analyzer. Note: this question is really about
developing a better understanding of the various composition rules for convex functions.

i. ‖(x, y, z)‖22 ≤ 1

ii.
√
x2 + 1 ≤ 3x+ y

iii. 1/x+ 2/y ≤ 5, x > 0, y > 0

iv. (x+ y)2/
√
y ≤ x− y + 5, y > 0

v. (x+ z)y ≥ 1, x+ z ≥ 0, y ≥ 0

vi. ‖(x+ 2y, x− y)‖2 = 0

vii. x
√
y ≥ 1, x ≥ 0, y ≥ 0

viii. log(ey−1 + ex/2) ≤ −ex
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