
Homework 3

Convex Optimization 10-725

Due Friday October 11 at 11:59pm

Submit your work as a single PDF on Gradescope. Make sure to prepare your
solution to each problem on a separate page. (Gradescope will ask you select the

pages which contain the solution to each problem.)

Total: 75 points

1 Duality in linear programs (18 points)

(a, 3 pts) Derive the dual of

min
x1,x2

− 4x1 + 2x2

subject to − x1 + x2 ≥ 2

x1 − x2 ≥ 1

x1, x2 ≥ 0.

What are the primal optimal value and the dual optimal value? What is the duality gap?

(b) Suppose both Ryan and the TAs want many students to attend their office hours. However, the
TAs have noticed that students are less likely to go to their office hours if they attend Ryan’s, so the
TAs decide to sabotage Ryan’s office hours. The TAs will block the paths between class in Baker
A51 and Ryan’s office in Baker 229B.

To simplify, we’ll think of the ways to get landscape between class and Ryan’s office as directed
graph G = (V,E,C). Here, vertices vi, vj ∈ V correspond to the locations i, j, the directed edge
(i, j) ∈ E is the directed path from vi to vj , and the capacity cij ∈ C is the maximum number of
convex optimization students that can pass through (i, j). Students start from vs, our classroom in
Baker A51, and move along the directed edges towards vt, Ryan’s office in Baker 229B. We assume
there are no edges that end in vs or originate in vt.

The TAs decide to block paths by building barricades. However, they want to do as little physical
labor as possible, so they only want to block the tightest path (i.e., smallest total capacity) in a way
that still prevents every student from reaching Ryan’s office.

In other words, the TAs want to find a partition, or cut, C = (S, T ) of V , such that vs ∈ S and
vt ∈ T and it has minimum capacity. The capacity of a cut is defined as:

c(S, T ) =
∑

(i,j)∈E

bijcij ,

where bij = 1 if vi ∈ S and vj ∈ T , and bij = 0 otherwise. Thus the The TAs min-cut problem can
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be formulated as follows:

min
b∈R|E|, x∈R|V |

∑
(i,j)∈E

bijcij

subject to xs = 1, xt = 0

bij ≥ xi − xj , bij , xi, xj ∈ {0, 1}, for all (i, j) ∈ E.

(1)

Now the questions.

(i, 1 pt) Explain what the variables xi and xj for all (i, j) ∈ E mean and why the introduction of
these variables is necessary (what would happen if the xi, xj variables weren’t introduced?)

(ii, 2 pt) The problem in (1) is an integer linear program (ILP), because its variables take integer
values. Because ILPs are generally difficult to solve, they are often relaxed to LPs. Consider the
following relaxation of the integer constraints in (1):

min
b∈R|E|, x∈R|V |

∑
(i,j)∈E

bijcij

subject to xs − xt ≥ 1, b ≥ 0

bij ≥ xi − xj , for all (i, j) ∈ E.

(2)

Explain why we can view this as a relaxation. How does the optimal value of the original ILP, f?ILP,
compare to the optimal value of the relaxed LP, f?LP?

(iii, 6 pts) Next, derive the dual of (2). Use the following dual variables: f ∈ R|E|, y ∈ R|E|, w ∈ R,
corresponding to the constraints in the order they appear in (2).

(iv, 2 pts) What does each constraint of the dual you derived in part (iii) mean in the setting of our
path-blocking problem? Hint: the dual of the relaxed min-cut problem is called max-flow.

(v, 1 pt) Finally, how does the optimal value of the relaxed LP, f?LP, compare to the optimal value of
the dual, f?dual?

(vi, 1 pt) Interestingly, a well-known theorem (the max-flow min-cut theorem) tells us is that the
original ILP and the max flow problem have equal optimal criterion values. What does this result
imply about the tightness of the convex relaxation of the ILP?

(vii, 2 pts) Consider the setting of our path-blocking problem in Figure 1. The capacities of all edges
are shown in the figure, and the min-cut has been drawn. Which paths will the TAs barricade? What
is the value of the max flow in this problem?

2 Conjugate fundamentals (14 points)

Recall that for any function f , convex or not, we can define its conjugate f∗ as

f∗(y) = max
x

yTx− f(x).

An immediate property of the conjugate is that f(x) + f∗(y) ≥ xT y for all x, y. This will be helpful
for the coming parts. Assume that f is closed; or for simplicity, just replace this by the assumption
that dom(f) = Rn.
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Figure 1: Min-cut of the path-blocking problem in Q1(b).

(a, 2 pts) Show that f∗∗, the conjugate of f∗, satisfies f∗∗ ≤ f .

(b, 4 pts) Prove that f∗∗ is the pointwise maximum of all affine functions that underestimate f , i.e.,

f∗∗(x) = max{g(x) : g is affine, g ≤ f}.

(c, 5 pts) Assuming f is convex, show that f∗∗ = f . Hint: note that from part (b) it suffices to
find, at each x, an affine underestimator g of f such that g(x) = f(x). To find such a function, use
the fact that f is convex, and so its epigraph epi(f) is a convex set. Therefore it has a supporting
hyperplane at (x, f(x)): there is some (a, b) 6= 0 such that

aTx+ bf(x) ≤ aT z + bt,

for all (z, t) ∈ epi(f). Use this to find the desired affine underestimator with g(x) = f(x).

(d, 3 pts) Again assuming that f is convex, show that

x ∈ ∂f∗(y) ⇐⇒ y ∈ ∂f(x).

Hint: one direction is straightforward, recalling the max rule for subgradients. For the other direction,
apply part (c).

3 Practice with conjugates and duality (16 points)

Below we go through an example of the use of conjugates for deriving to the dual of an optimization
problem. Please specify the domain of the conjugate function, where appropriate.
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(a, 4 pts) Derive the conjugate function of f(x) = log(1 + e−x).

(b, 3 pts) Derive the conjugate function of f(θ) =
∑n
i=1 log(1 + e−yiθi), where yi ∈ {−1, 1}.

(c, 3 pts) Prove that the dual of

min
θ

n∑
i=1

log(1 + e−yiθi) + λ‖Dθ‖1, (3)

where D ∈ Rm×n is an arbitrary matrix and yi ∈ {−1, 1}, is

min
u

n∑
i=1

(
yi(D

Tu)i log(yi(D
Tu)i) + (1− yi(DTu)i) log(1− yi(DTu)i)

)
subject to 0 ≤ yi(DTu)i ≤ 1, i = 1, . . . , n, ‖u‖∞ ≤ λ.

(4)

Hint: use the relationship between duals and conjugates, and the “shifting linear transformations”
property, as covered in lecture.

(d, 3 pts) For the pair of primal and dual to the problems in part (c), write down the primal solution
θ in terms of dual solution u. Write down u in terms of θ, or explain why an analytical solution is
unavailable.

(e, 3 pts) Explain (for a generic D) which of the first-order methods you learned in lectures can
be applied to solve (3), and separately, to solve the dual (4). Here “can be applied” means that
it is implemented in practice, not in principle (meaning, if there is not a known closed-form for a
subgradient or projection or proximal operator, then we will say it is not implementable).

4 Binary sequence denoising (27 points)

Suppose that we observe a sequence of binary variables, zi ∈ {0, 1} across timepoints i = 1, 2, . . . , n,
and we believe that these variables are generated according to

zi ∼ Bin(pi), independently, for i = 1, . . . , n,

where the underlying probabilities pi ∈ [0, 1] are piecewise constant across i = 1, . . . , n. An illustration
is given in Figure 2.

As motivation, suppose that we work at a hospital, and are examining boxes of medicine that are
being shipped to us, one at a time, across timepoints i = 1, . . . , n. Let zi be the indicator that the
box at time i is defective. We believe that the manufacturing process is such that there is a given
(constant) probability of defect across some unknown period of time, and then due to a change in the
process, this probability changes to some other value and remains there for another unknown period
of time, with another change potentially happening after that, etc. To construct an estimate of the
underlying probabilities from the observed binary data, we assume the logistic model

pi =
eθi

1 + eθi
, i = 1, . . . , n,

and compute estimates θ̂i, i = 1, . . . , n by solving:

min
θ

n∑
i=1

(
− ziθi + log(1 + eθi)

)
+ λ

n−1∑
i=1

|θi − θi+1|. (5)
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Figure 2: An illustration of binary data for Q4, where the black hollow points represent the observed
data points zi and the red solid points the underlying probabilities pi.

This is called a logistic fused lasso problem.

(a, 10 pts) What happens if we were to try to solve (5) directly using proximal gradient descent? To
do this, we would need to be able to evaluate the prox function

proxt(x) = argmin
z

1

2t
‖x− z‖22 + λ

n−1∑
i=1

|zi − zi+1|. (6)

Evaluating such a prox function is difficult because the above problem does not have an explicit
(closed-form) solution; transparently, we would have to apply another iterative optimization technique
to approximate its solution. Fortunately, there is a beautiful dynamic programming algorithm by
Nicholas Johnson (see Johnson (2013), “A dynamic programming algorithm for the fused lasso and
L0-segmentation”) that gives us a direct (noniterative) method for (6), and runs in linear-time. An
implementation of this algorithm in C++ is given on the course website in prox.cpp.

Implement proximal gradient descent to solve (5), using the prox function as provided to you
in prox.cpp. Use backtracking to determine the step size at each iteration, and stop when the
difference in criterion value across successive iterations is less than a user-specified tolerance level ε.
Note: it might require some effort/fiddling to be able to call the C++ function in prox.cpp from
your programming language of choice (that you are using to write the solution); but essentially every
high-level programming language (e.g., Python, R, Matlab, Julia) should allow you to do this directly.
For example, in R, you can first compile the C++ code by running R CMD SHLIB prox.cpp from
your command line. This will give you the file prox.so. Then use the provided code in prox.R on
the course website, to access the prox function from R. In Python, you can use the provided code in
prox.py on the course website and call from prox import prox dp (please see the doc string for
usage).

After implementing it, run your algorithm on the binary data binseq.txt on the course website.
Use λ = 20 as the tuning parameter. Start with an initial step size t = 1 before each backtracking
loop, with β = 0.8 as the contraction factor in backtracking. Use a stopping tolerance ε = 10−6. Plot
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the binary data, and on top of it, the estimated probabilities

p̂i =
eθ̂i

1 + eθ̂i
, i = 1, . . . , n,

that come from your solution θ̂i, i = 1, . . . , n. Report how many total iterations (sum of the number
of inner backtracking iterations) your algorithm took.

(b, 2 pts) By appropriately transforming z ∈ {0, 1}n into a vector y ∈ {−1, 1}n (you should specify
the transformation, but note, this is simply a relabeling), show that the loss in (5) is exactly of the
form in (3). Show that the penalty in (5) is also of the form in (3) (specify the matrix D).

(c, 5 pts) Now that we have seen (5) and (3) are the same problem, we consider solving their dual
(4). In order to facilitate using first-order algorithms, we will “soften” the constraints and lift them
into the criterion, giving us

min
u

n∑
i=1

(
yi(D

Tu)i log(yi(D
Tu)i) + (1− yi(DTu)i) log(1− yi(DTu)i)

)
− 1

τ
·
n∑
i=1

(
log(yi(D

Tu)i) + log(1− yi(DTu)i)

)
− 1

τ
·
n−1∑
i=1

(
log(λ− ui) + log(ui + λ))

)
. (7)

Here we will fix τ to be a large but positive constant, and so when the constraints are close to being
violated, the second half of the criterion function (the part we added) approaches infinity. Choosing
a large τ may seem like a hack, but we will learn a more principled way of doing this later when we
talk about the log barrier method.

In order to run gradient descent, you will need to initialize it at a point u(0) that is feasible for
the criterion in (7). In fact, it is helpful to find a feasible point that lies inside the domain by some
“buffer”, say for δ > 0 (and δ < min{1, λ}), we would like to find a point u such that

δ ≤ yi(DTu)i ≤ 1− δ, i = 1, . . . , n, ‖u‖∞ ≤ λ− δ.

Formulate a linear program (LP) to find such a point. Then, for y,D as in part (a) (corresponding
to the binseq data in binseq.txt from the website), λ = 20, and δ = 0.01, solve the LP (using your
favorite built-in solver), and verify that your solution truly meets all the constraints.

(d, 10 pts) Now implement gradient descent with backtracking to solve (7). Again use backtracking
to determine the step size at each iteration, and stop when the difference in criterion value across
successive iterations is less than a user-specified tolerance level ε. An important note: in order to
properly backtrack, you of course need to make sure that the proposed update is feasible for the
criterion. The easiest way for you to do this is just to define the criterion to be infinite when a point
is outside of its domain. If your code reflects this, then the backtracking exit criterion will trivially
fail when the proposed update is not feasible (because the left-hand side of the desired inequality,
which is the criterion value at the proposed update, will be infinite), and so the inner backtracking
loop will continue until a feasible point is reached.

After implementing it, run your algorithm on the binary data binseq.txt on the course website.
Use τ = 103. Again use λ = 20 as the tuning parameter, t = 1 as the initial step size before running
each backtracking loop, β = 0.8 as the contraction factor, and ε = 10−6 as the stopping tolerance.
Run your algorithm for a maximum of 50,000 iterations. Use the primal-dual relationship you found
in Q3(d) to get a primal solution from your dual solution, then plot the estimated probabilities p̂i,
i = 1, . . . , n and compare to those from part (b). Are they close? Also compare the primal criterion
values from the solutions you computed here and in part (b). Which is lower?
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Hint 1: storing D as a sparse matrix should make a big difference in computational speed, since
in this case multiplying by D or DT should be much faster.

Hint 2 (so that you don’t spend days trying to debug): the point here is supposed to be that dual
gradient descent is very slow to converge. Our implementation reached the maximum number of
iterations (it didn’t achieve an ε = 10−6 difference between successive criterion values before that).
This approximate solution from dual gradient descent should look like a “more curved” version of
the solution reached via primal proximal gradient. If ran for more iterations, it should start to look
more piecewise constant, like the primal proximal gradient solution. Newton’s method, as we will see
later, should do a lot better when applied to the dual here.
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