
Homework 5

Convex Optimization 10-725

Due Friday November 15 at 11:59pm

Submit your work as a single PDF on Gradescope. Make sure to prepare your
solution to each problem on a separate page. (Gradescope will ask you select the

pages which contain the solution to each problem.)

Choose to solve one of Q3 or Q4.
That is, you will either submit Q1+Q2+Q3 or Q1+Q2+Q4.

Note that the programming questions in this assignment, Q1(e), Q3(g), Q4(f), will be
peer-graded. Instructions to follow about how this will be done.

Total: 63 points

1 Coordinatewise optima of smooth + separable convex func-
tions (23 points)

Let f(x) = g(x) +
∑n

i=1 hi(xi), where g and hi, i = 1, . . . , n are convex, and g is differentiable. Let
x be a point that is a coordinatewise minimizer, i.e.,

f(x+ vei) ≥ f(x), for all v and i = 1, . . . , n.

(Here ei is denotes the ith standard basis vector, which is all 0s except for a 1 in the ith component,
for i = 1, . . . , n.) We will show that x must be a global minimizer of f , by fixing an arbitrary y and
establishing that f(y) ≥ f(x).

(a, 2 pts) Using convexity of g, show that

f(y)− f(x) ≥
n∑

i=1

(
∇ig(x)(yi − xi) + hi(yi)− hi(xi)

)︸ ︷︷ ︸
ai

,

where ∇ig denotes the ith component of the vector-valued gradient map ∇g.

(b, 4 pts) Using the fact that x is a coordinatewise minimizer, and subgradient optimality, show that
ai ≥ 0, i = 1, . . . , n, and thus f(y) ≥ f(x).

(c, 5 pts) Now let g(x) = 1
2x

TQx− bTx for Q � 0, and h(x) = λ‖x‖1. Write out the updates for one
cycle of coordinate descent:

x
(k)
i = argmin

xi

f
(
x

(k)
1 , . . . , x

(k)
i−1, xi, x

(k−1)
i+1 , . . . , x(k−1)

n

)
, i = 1, . . . , n,
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as expicitly as possible. Write out the updates for one cycle of coordinate proximal gradient descent:

x
(k)
i = proxhi,tki

(
x

(k−1)
i − tki · ∇ig

(
x

(k)
1 , . . . , x

(k−1)
i , . . . , x(k−1)

n

))
, i = 1, . . . , n,

again as explicitly as possible. Show that these two are equal under certain choices of step sizes tki,
i = 1, . . . , n.

(d, 2 pts) Argue that the step sizes, which make coordinate proximal gradient descent equivalent to
coordinate descent, can be viewed as the result of exact step size optimization, i.e., exact line search,

tki = argmin
t≥0

f
(
x

(k)
1 , . . . , x

(k)
i−1, x

(k)
i (t), x

(k−1)
i+1 , . . . , x(k−1)

n

)
, i = 1, . . . , n,

where x
(k)
i (t) denotes the ith update from coordinate proximal gradient descent with step size t.

(e, 10 pts) Design and conduct an experiment to empirically investigate, for the given class of functions
f = g + h (quadratic plus `1), the use of exact steps sizes in coordinate proximal gradient descent.
That is, we know (from parts (c) and (d)) that coordinate descent is the same as using exact line
search at each step of coordinate proximal gradient descent; how much does this help over fixed step
sizes, or backtracking line search?

Some general tips: be completely explicit about all your experimental design choices; think in
particular about the problem conditioning; use figures rather than tables to report what you find;
aggregate results over multiple simulation instances. Your simulation will be graded on the following
criteria (3 points each):

• is the setup clearly explained?

• are the results clearly explained?

• are the conclusions justified?

As usual, append all code in an appendix (1 point for readable/organized code).

2 Conjugates, duality, and proximal mappings (18 points)

Let f, g be closed and convex functions, and f∗, g∗ denote their conjugates.

(a, 2 pts) For a matrix A ∈ Rm×n, prove that the dual problem of

min
x

f(x) + g(Ax) (1)

is
max

y
−f∗(−AT y)− g∗(y). (2)

(b, 3 pts) Assume that f is strictly convex. Prove that this implies f∗ is differentiable, and that

∇f∗(y) = argmin
z

f(z)− yT z.

Hint: use the fact that x ∈ ∂f∗(y) ⇐⇒ y ∈ ∂f(x), as you established if Q2(d) of Homework 3.

From now on, assume that f is strictly convex and smooth, and g is not smooth, but we know its
proximal operator

proxg,t(x) = argmin
z

1

2t
‖x− z‖22 + g(z).
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We note that this does not necessarily mean that we know the proximal operator for h(x) = g(Ax).
Therefore we cannot easily apply proximal gradient descent to the primal problem (1). However,
as you will show in the next few parts, knowing the the proximal mapping of g does lead to the
proximal mapping of g∗, which leads to an algorithm on the dual problem (2).

(c, 4 pts) Prove first that
proxg,1(x) + proxg∗,1(x) = x,

for all x. This is sometimes called Moreau’s theorem. Note the specification t = 1 in the above. Hint:
again, use x ∈ ∂g∗(y) ⇐⇒ y ∈ ∂g(x).

(d, 4 pts) Verify that for t > 0, we have (tg)∗(x) = tg∗(x/t). Use this, and part (c), to prove that for
any t > 0,

proxg,t(x) + t · proxg∗,1/t(x/t) = x,

for all x. Hint: apply part (c) to the function tg. Then note that proxg,t(x) = proxtg,1(x), and the
same for g∗.

(e, 2 pts) Now write down a proximal gradient ascent algorithm for the dual problem (2). Use parts
(b) and (d) of this question to express all quantities in terms of f and g. That is, your proximal
gradient ascent updates should not have any appearences of ∇f∗ and proxg∗,t(·).

(f, 3 pts) Write down the steps of ADMM applied to problem (1), after substituting g(z) for g(Ax)
in the criterion, and introducing the inequality constrained Ax = z. Compare these to the steps of
the dual proximal gradient algorithm from part (e). How are they different? Briefly explain any
advantages/disadvantages you see to using each method.

3 Coordinate descent for the graphical lasso (22 points)

Let X ∈ Rn×p be a data matrix whose rows are independent observations from N(0,Σ). Normality
theory tells us that for x ∼ N(0,Σ), Σ−1

ij = 0 implies that the variables xi and xj are conditionally
independent given all the other variables {xk}k/∈{i,j}. So, if we believe that many pairs of features
recorded in X are conditionally independent given the other features (which is often a reasonable
belief if p is large), then we want an estimate of Σ such that Σ−1 is sparse. This goal can be achieved
by solving the graphical lasso problem

min
Θ
− log det Θ + tr(SΘ) + λ‖Θ‖1. (3)

Here the domain of the minimization problem is Sp++ (the space of symmetric p× p positive definite
matrices), S = XTX/n is the samples covariance matrix, and ‖Θ‖1 =

∑p
i,j=1 |Θij |. Note that the

solution Θ̂ in the above serves as our estimate for Σ−1.

(a, 3 pts) Prove that the subgradient optimality condition for the graphical lasso problem (3) is

−Θ−1 + S + λΓ = 0, (4)

where Γij ∈ ∂|Θij | for each i, j. Let W = Θ−1. Verify that the above implies that Wii = Sii + λ for
each i.

Consider now partitioning W as

W =

(
W11 w12

w21 w22

)
,
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where W11 ∈ R(p−1)×(p−1), w12 ∈ Rp−1, wT
21 ∈ Rp−1, and w22 ∈ R. Consider partitioning the other

matrices Θ, S, and Γ in the same manner.

(b, 2 pts) Using the fact that WΘ = I and the subgradient optimality condiiton from part (a), show
that

w12 = −W11θ12/θ22

and therefore

W11
θ12

θ22
+ s12 + λγ12 = 0.

(c, 3 pts) Let now β = θ12/θ22 ∈ Rp−1. Write a lasso problem (with β as the optimization variable)
such that β = θ12/θ22 is the solution. Note: in this lasso problem, you may directly write out the
quadratic and linear terms in the loss (i.e., this will be easier than directly specifying the form of the
least squares loss).

Observe that, once the lasso problem from part (c) is solved, it is easy to recover w12 = −W11β and
w21 = wT

12. Furthermore, θ12, θT21, and θ22 are directly obtained by solving(
W11 w12

w21 w22

)(
Θ11 θ12

θ21 θ22

)
=

(
I 0
0 1

)
.

By rearranging appropriately the entries of W , Θ, S, and Γ, one can then iterate this procedure to
solve for the entire matrix W .

(d, 3 pts) Describe an algorithm to estimate Θ based on iterative blockwise minimization using the
results of parts (a), (b), and (c).

(e, 1 pts) Explain why, strictly speaking, such an algorithm is in fact not a blockwise coordinate
descent algorithm for the graphical lasso problem as formulated in (3).

(f, 6 pts) We will now show that the coordinate descent algorithm suggested by parts (a), (b), and
(c), which optimizes over the matrix W and is known as the glasso algorithm1, is in fact a proper
coordinate descent algorithm for the dual of the graphical lasso problem2. Prove that the dual of (3)
is (equivalent to)

min
Γ̃
− log det(Γ̃ + S)− p subject to ‖Γ̃‖∞ ≤ λ. (5)

Write down the KKT conditions for the dual problem (5). Show that the subgradient optimality
condition for the primal graphical lasso problem (3) can be retrieved from the KKT conditions for
the dual problem (possibly after appropriate changes of variable). Finally, briefly clarify why the
glasso algorithm that you derived in part (d) is a proper coordinate descent for (5).

(g, 4 pts) Produce an empirical example to verify that the glasso algorithm (which you will implement)
is not a descent algorithm on the primal graphical lasso problem (3), but is indeed a descent algorithm
on its equivalent dual (5). Explain clearly your setup and results. As always, append your code.

1Friedman et al. (2007), “Sparse inverse covariance estimation with the graphical lasso”.
2Mazumder and Hastie (2013), “The graphical lasso: New insights and alternatives”.
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4 Coordinate descent and Dykstra (22 points)

Given y ∈ Rn, X ∈ Rn×p, consider the regularized least squares program

min
w∈Rp

1

2
‖y −Xw‖22 +

d∑
i=1

hi(wi), (6)

where w = (w1, . . . , wd) is a block decomposition with wi ∈ Rpi , i = 1, . . . , d, and where hi, i =
1, . . . , d are convex functions. Let Xi ∈ Rn×pi , i = 1, . . . , d be a corresponding block decomposition
of the columns of X. Consider coordinate descent, which repeats the following updates:

w
(k)
i = argmin

wi∈Rpi

1

2

∥∥∥∥y −∑
j<i

Xjw
(k)
j −

∑
j>i

Xjw
(k−1)
j −Xiwi

∥∥∥∥2

2

+ hi(wi), i = 1, . . . , d, (7)

for k = 1, 2, 3, . . .. Assume that hi, i = 1, . . . , d are each support functions

hi(v) = max
u∈Di

〈u, v〉, i = 1, . . . , d.

where Di ⊆ Rpi , i = 1, . . . , d are closed, convex sets.

(a, 3 pts) Show that the dual of (6) is what is sometimes called the best approximation problem

min
u∈Rn

‖y − u‖22 subject to u ∈ C1 ∩ · · · ∩ Cd. (8)

where each Ci = (XT
i )−1(Di) ⊆ Rn, the inverse image of Di under the linear map XT

i . Show also
that the relationship between the primal and dual solutions w, u is

u = y −Xw. (9)

(b, 2 pts) Assume that each Xi has full column rank. Show that, for each i and any a ∈ Rn,

w∗i = argmin
wi∈Rpi

1

2
‖a−Xiwi‖22 + hi(wi) ⇐⇒ Xiw

∗
i = a− PCi(a).

Hint: write Xiw
∗
i in terms of a proximal operator then use Moreau’s theorem in Q2(c).

Dykstra’s algorithm for problem (8) can be described as follows. We set u
(0)
d = y, z

(0)
1 = · · · = z

(0)
d = 0,

and then repeat:

u
(k)
0 = u

(k−1)
d ,

u
(k)
i = PCi

(u
(k)
i−1 + z

(k−1)
i ),

z
(k)
i = u

(k)
i−1 + z

(k−1)
i − u(k)

i ,

}
for i = 1, . . . , d,

(10)

for k = 1, 2, 3, . . .. As k →∞, the iterate u
(k)
0 in (10) will approach the solution in (8).

(c, 6 pts) Assuming we initialize w(0) = 0, show that coordinate descent (7) for problem (6) and
Dykstra’s algorithm (10) for problem (8) are in fact completely equivalent, and satisfy

z
(k)
i = Xiw

(k)
i and u

(k)
i = y −

∑
j≤i

Xjw
(k)
j −

∑
j>i

Xjw
(k−1)
j , for i = 1, . . . , d,

at all iterations k = 1, 2, 3, . . .. Hint: use an inductive argument, and the result in part (b).
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Now let γ1, . . . , γd > 0 be arbitrary weights with
∑d

i=1 γi = 1. Consider the problem

min
u=(u1,...,ud)∈Rnd

d∑
i=1

γi‖y − ui‖22 subject to u ∈ C0 ∩ (C1 × · · · × Cd), (11)

where C0 = {(u1, . . . , ud) ∈ Rnd : u1 = · · · = ud}. Observe that this is equivalent to (8), and is
sometimes called the product-space reformulation of (8), or the consensus form of (8).

(d, 3 pts) Rescale (11) to turn the loss into an unweighted squared loss, then apply Dykstra’s
algorithm to the resulting best approximation problem. Show that the resulting algorithm repeats:

u
(k)
0 =

d∑
i=1

γiu
(k−1)
i ,

u
(k)
i = PCi(u

(k)
0 + z

(k−1)
i ),

z
(k)
i = u

(k)
0 + z

(k−1)
i − u(k)

i ,

}
for i = 1, . . . , d,

(12)

for k = 1, 2, 3, . . .. Importantly, the steps enclosed in curly brace above can all be performed in
parallel, so that (12) is a parallel version of Dykstra’s algorithm (10) for problem (8).

(e, 4 pts) Prove that the iterations (12) can be rewritten in equivalent form as

w
(k)
i = argmin

wi∈Rpi

1

2

∥∥∥y −Xw(k−1) +Xiw
(k−1)
i /γi −Xiwi/γi

∥∥∥2

2
+ hi(wi/γi), i = 1, . . . , d, (13)

for k = 1, 2, 3, . . .. Importantly, the updates above can all be performed in parallel, so that (13) is a
parallel version of coordinate descent (7) for problem (6). Hint: use an inductive argument and the
result in part (b), similar to your proof in part (c).

(f, 4 pts) Produce an empirical example to verify that coordinate descent and Dykstra on (6) and
(8), respectively (which you will both implement), are equivalent. Explain clearly your setup and
results. As always, append your code.
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